BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Penna F, Ballarò R, Beltrà M, De Lucia S, García Castillo L, Costelli P. The Skeletal Muscle as an Active Player Against Cancer Cachexia. Front Physiol 2019;10:41. [PMID: 30833900 DOI: 10.3389/fphys.2019.00041] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Paul D, Nedelcu AM. The underexplored links between cancer and the internal body climate: Implications for cancer prevention and treatment. Front Oncol 2022;12:1040034. [PMID: 36620608 DOI: 10.3389/fonc.2022.1040034] [Reference Citation Analysis]
2 Di Girolamo D, Tajbakhsh S. Pathological features of tissues and cell populations during cancer cachexia. Cell Regen 2022;11:15. [DOI: 10.1186/s13619-022-00108-9] [Reference Citation Analysis]
3 Ragni M, Fornelli C, Nisoli E, Penna F. Amino Acids in Cancer and Cachexia: An Integrated View. Cancers (Basel) 2022;14. [PMID: 36428783 DOI: 10.3390/cancers14225691] [Reference Citation Analysis]
4 Eid AA, Njeim R, Khuri FR, Thomas DK. Cancer Cachexia. Holland‐Frei Cancer Medicine 2022. [DOI: 10.1002/9781119000822.hfcm125.pub2] [Reference Citation Analysis]
5 Shin E, Kang H, Lee H, Lee S, Jeon J, Seong K, Youn H, Youn B. Exosomal Plasminogen Activator Inhibitor-1 Induces Ionizing Radiation-Adaptive Glioblastoma Cachexia. Cells 2022;11:3102. [PMID: 36231065 DOI: 10.3390/cells11193102] [Reference Citation Analysis]
6 Pasqualetti F, Gabelloni M, Gonnelli A, Faggioni L, Cantarella M, Montrone S, Gadducci G, Giannini N, Montemurro N, Mattioni R, Perrini P, Morganti R, Cosottini M, Neri E, Paiar F. Impact of temporalis muscle thickness in elderly patients with newly diagnosed glioblastoma treated with radio or radio-chemotherapy. Radiol med 2022;127:919-924. [DOI: 10.1007/s11547-022-01524-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Huang Q, Wu M, Wu X, Zhang Y, Xia Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim Biophys Acta Rev Cancer 2022;1877:188761. [PMID: 35850277 DOI: 10.1016/j.bbcan.2022.188761] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Dolly A, Lecomte T, Tabchouri N, Caulet M, Michot N, Anon B, Chautard R, Desvignes Y, Ouaissi M, Fromont-Hankard G, Dumas JF, Servais S. Pectoralis major muscle atrophy is associated with mitochondrial energy wasting in cachectic patients with gastrointestinal cancer. J Cachexia Sarcopenia Muscle 2022;13:1837-49. [PMID: 35316572 DOI: 10.1002/jcsm.12984] [Reference Citation Analysis]
9 Miyazaki M. Physical Exercise and Skeletal Muscle Adaptation in Cancer Cachexia. Physical Therapy and Research in Patients with Cancer 2022. [DOI: 10.1007/978-981-19-6710-8_11] [Reference Citation Analysis]
10 Lee DU, Fan GH, Hastie DJ, Addonizio EA, Han J, Prakasam VN, Karagozian R. The clinical impact of malnutrition on the postoperative outcomes of patients undergoing gastrectomy for gastric cancer: Propensity score matched analysis of 2011-2017 hospital database. Clin Nutr ESPEN 2021;46:484-90. [PMID: 34857239 DOI: 10.1016/j.clnesp.2021.09.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Viana LR, Chiocchetti GDME, Oroy L, Vieira WF, Busanello ENB, Marques AC, Salgado CDM, de Oliveira ALR, Vieira AS, Suarez PS, de Sousa LM, Castelucci BG, Vercesi AE, Consonni SR, Gomes-marcondes MCC. Leucine-Rich Diet Improved Muscle Function in Cachectic Walker 256 Tumour-Bearing Wistar Rats. Cells 2021;10:3272. [DOI: 10.3390/cells10123272] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Galib M, Araf Y, Naser IB, Promon SK. Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia. J CLIN EXP INVEST 2021;12:em00783. [DOI: 10.29333/jcei/11289] [Reference Citation Analysis]
13 Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021;9:719643. [PMID: 34595171 DOI: 10.3389/fcell.2021.719643] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
14 Mao X, Gu Y, Sui X, Shen L, Han J, Wang H, Xi Q, Zhuang Q, Meng Q, Wu G. Phosphorylation of Dynamin-Related Protein 1 (DRP1) Regulates Mitochondrial Dynamics and Skeletal Muscle Wasting in Cancer Cachexia. Front Cell Dev Biol 2021;9:673618. [PMID: 34422804 DOI: 10.3389/fcell.2021.673618] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Belli R, Ferraro E, Molfino A, Carletti R, Tambaro F, Costelli P, Muscaritoli M. Liquid Biopsy for Cancer Cachexia: Focus on Muscle-Derived microRNAs. Int J Mol Sci 2021;22:9007. [PMID: 34445710 DOI: 10.3390/ijms22169007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
16 Liu H, Zang P, Lee II, Anderson B, Christiani A, Strait-Bodey L, Breckheimer BA, Storie M, Tewnion A, Krumm K, Li T, Irwin B, Garcia JM. Growth hormone secretagogue receptor-1a mediates ghrelin's effects on attenuating tumour-induced loss of muscle strength but not muscle mass. J Cachexia Sarcopenia Muscle 2021. [PMID: 34264027 DOI: 10.1002/jcsm.12743] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Pin F, Bonewald LF, Bonetto A. Role of myokines and osteokines in cancer cachexia. Exp Biol Med (Maywood) 2021;:15353702211009213. [PMID: 33899538 DOI: 10.1177/15353702211009213] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
18 Rocha-Rodrigues S, Matos A, Afonso J, Mendes-Ferreira M, Abade E, Teixeira E, Silva B, Murawska-Ciałowicz E, Oliveira MJ, Ribeiro R. Skeletal Muscle-Adipose Tissue-Tumor Axis: Molecular Mechanisms Linking Exercise Training in Prostate Cancer. Int J Mol Sci 2021;22:4469. [PMID: 33922898 DOI: 10.3390/ijms22094469] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Moon JY, Kim HS. α-Syntrophin alleviates ER stress to maintain protein homeostasis during myoblast differentiation. FEBS Lett 2021;595:1656-70. [PMID: 33834492 DOI: 10.1002/1873-3468.14088] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Hulmi JJ, Nissinen TA, Penna F, Bonetto A. Targeting the Activin Receptor Signaling to Counteract the Multi-Systemic Complications of Cancer and Its Treatments. Cells 2021;10:516. [PMID: 33671024 DOI: 10.3390/cells10030516] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
21 Jin K, Tang Y, Wang A, Hu Z, Liu C, Zhou H, Yu X. Body Composition and Response and Outcome of Neoadjuvant Treatment for Pancreatic Cancer. Nutr Cancer 2021;:1-10. [PMID: 33629916 DOI: 10.1080/01635581.2020.1870704] [Reference Citation Analysis]
22 Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules 2021;26:E407. [PMID: 33466753 DOI: 10.3390/molecules26020407] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
23 Rani Y, Kaur K, Sharma M, Kalia N. In silico analysis of SNPs in human phosphofructokinase, muscle (PFKM) gene: An apparent therapeutic target of aerobic glycolysis and cancer. Gene Reports 2020;21:100920. [DOI: 10.1016/j.genrep.2020.100920] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Tong X, Kong M, Thurmond DC. Editorial: Connecting the Dots Between Obesity, Diabetes and Cancer. Front Endocrinol (Lausanne) 2020;11:583456. [PMID: 33329390 DOI: 10.3389/fendo.2020.583456] [Reference Citation Analysis]
25 Masi T, Patel BM. Altered glucose metabolism and insulin resistance in cancer-induced cachexia: a sweet poison. Pharmacol Rep 2021;73:17-30. [PMID: 33141425 DOI: 10.1007/s43440-020-00179-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
26 Basile D, Corvaja C, Caccialanza R, Aprile G. Sarcopenia: looking to muscle mass to better manage pancreatic cancer patients. Curr Opin Support Palliat Care 2019;13:279-85. [PMID: 31361630 DOI: 10.1097/SPC.0000000000000455] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
27 Kitajima Y, Yoshioka K, Suzuki N. The ubiquitin–proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. J Physiol Sci 2020;70. [DOI: 10.1186/s12576-020-00768-9] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
28 Kelm NQ, Straughn AR, Kakar SS. Withaferin A attenuates ovarian cancer-induced cardiac cachexia. PLoS One 2020;15:e0236680. [PMID: 32722688 DOI: 10.1371/journal.pone.0236680] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
29 Ojima C, Noguchi Y, Miyamoto T, Saito Y, Orihashi H, Yoshimatsu Y, Watabe T, Takayama K, Hayashi Y, Itoh F. Peptide-2 from mouse myostatin precursor protein alleviates muscle wasting in cancer-associated cachexia. Cancer Sci 2020;111:2954-64. [PMID: 32519375 DOI: 10.1111/cas.14520] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
30 Rani Y, kaur K, Sharma M, Kalia N. In silico analysis of SNPs in human phosphofructokinase, Muscle (PFKM) gene: An apparent therapeutic target of aerobic glycolysis and cancer.. [DOI: 10.1101/2020.05.27.118653] [Reference Citation Analysis]
31 Frampton J, Murphy KG, Frost G, Chambers ES. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab 2020;2:840-8. [PMID: 32694821 DOI: 10.1038/s42255-020-0188-7] [Cited by in Crossref: 98] [Cited by in F6Publishing: 102] [Article Influence: 32.7] [Reference Citation Analysis]
32 Judge SM, Deyhle MR, Neyroud D, Nosacka RL, D'Lugos AC, Cameron ME, Vohra RS, Smuder AJ, Roberts BM, Callaway CS, Underwood PW, Chrzanowski SM, Batra A, Murphy ME, Heaven JD, Walter GA, Trevino JG, Judge AR. MEF2c-Dependent Downregulation of Myocilin Mediates Cancer-Induced Muscle Wasting and Associates with Cachexia in Patients with Cancer. Cancer Res 2020;80:1861-74. [PMID: 32132110 DOI: 10.1158/0008-5472.CAN-19-1558] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
33 Wang R, Nakshatri H. Systemic Actions of Breast Cancer Facilitate Functional Limitations. Cancers (Basel) 2020;12:E194. [PMID: 31941005 DOI: 10.3390/cancers12010194] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
34 Roy A, Kumar A. ER Stress and Unfolded Protein Response in Cancer Cachexia. Cancers (Basel) 2019;11:E1929. [PMID: 31817027 DOI: 10.3390/cancers11121929] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
35 Berdeaux R, Hutchins C. Anabolic and Pro-metabolic Functions of CREB-CRTC in Skeletal Muscle: Advantages and Obstacles for Type 2 Diabetes and Cancer Cachexia. Front Endocrinol (Lausanne) 2019;10:535. [PMID: 31428057 DOI: 10.3389/fendo.2019.00535] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]