BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kranstuber AL, Del Rio C, Biesiadecki BJ, Hamlin RL, Ottobre J, Gyorke S, Lacombe VA. Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Front Physiol. 2012;3:292. [PMID: 22934044 DOI: 10.3389/fphys.2012.00292] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 Liu X, Xu Q, Wang X, Zhao Z, Zhang L, Zhong L, Li L, Kang W, Zhang Y, Ge Z. Irbesartan ameliorates diabetic cardiomyopathy by regulating protein kinase D and ER stress activation in a type 2 diabetes rat model. Pharmacological Research 2015;93:43-51. [DOI: 10.1016/j.phrs.2015.01.001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
2 Bodiga VL, Eda SR, Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail Rev. 2014;19:49-63. [PMID: 23404649 DOI: 10.1007/s10741-013-9374-y] [Cited by in Crossref: 100] [Cited by in F6Publishing: 101] [Article Influence: 12.5] [Reference Citation Analysis]
3 Oikonomou E, Mourouzis K, Fountoulakis P, Papamikroulis GA, Siasos G, Antonopoulos A, Vogiatzi G, Tsalamadris S, Vavuranakis M, Tousoulis D. Interrelationship between diabetes mellitus and heart failure: the role of peroxisome proliferator-activated receptors in left ventricle performance. Heart Fail Rev 2018;23:389-408. [PMID: 29453696 DOI: 10.1007/s10741-018-9682-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
4 Ritchie RH, Abel ED. Basic Mechanisms of Diabetic Heart Disease. Circ Res 2020;126:1501-25. [PMID: 32437308 DOI: 10.1161/CIRCRESAHA.120.315913] [Cited by in Crossref: 45] [Cited by in F6Publishing: 25] [Article Influence: 22.5] [Reference Citation Analysis]
5 Gollmer J, Zirlik A, Bugger H. Established and Emerging Mechanisms of Diabetic Cardiomyopathy. J Lipid Atheroscler 2019;8:26-47. [PMID: 32821697 DOI: 10.12997/jla.2019.8.1.26] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Roy B. Biomolecular basis of the role of diabetes mellitus in osteoporosis and bone fractures. World J Diabetes 2013; 4(4): 101-113 [PMID: 23961320 DOI: 10.4239/wjd.v4.i4.101] [Cited by in CrossRef: 62] [Cited by in F6Publishing: 57] [Article Influence: 6.9] [Reference Citation Analysis]
7 Ruiz-Meana M, Minguet M, Bou-Teen D, Miro-Casas E, Castans C, Castellano J, Bonzon-Kulichenko E, Igual A, Rodriguez-Lecoq R, Vázquez J, Garcia-Dorado D. Ryanodine Receptor Glycation Favors Mitochondrial Damage in the Senescent Heart. Circulation 2019;139:949-64. [PMID: 30586718 DOI: 10.1161/CIRCULATIONAHA.118.035869] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
8 Hu X, Bai T, Xu Z, Liu Q, Zheng Y, Cai L. Pathophysiological Fundamentals of Diabetic Cardiomyopathy. Compr Physiol 2017;7:693-711. [PMID: 28333387 DOI: 10.1002/cphy.c160021] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
9 de Laat MA, Gruntmeir KJ, Pollitt CC, McGowan CM, Sillence MN, Lacombe VA. Hyperinsulinemia Down-Regulates TLR4 Expression in the Mammalian Heart. Front Endocrinol (Lausanne) 2014;5:120. [PMID: 25101057 DOI: 10.3389/fendo.2014.00120] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
10 Deluyker D, Ferferieva V, Noben J, Swennen Q, Bronckaers A, Lambrichts I, Rigo J, Bito V. Cross-linking versus RAGE: How do high molecular weight advanced glycation products induce cardiac dysfunction? International Journal of Cardiology 2016;210:100-8. [DOI: 10.1016/j.ijcard.2016.02.095] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
11 Khokhlova A, Myachina T, Volzhaninov D, Butova X, Kochurova A, Berg V, Gette I, Moroz G, Klinova S, Minigalieva I, Solovyova O, Danilova I, Sokolova K, Kopylova G, Shchepkin D. Type 1 Diabetes Impairs Cardiomyocyte Contractility in the Left and Right Ventricular Free Walls but Preserves It in the Interventricular Septum. Int J Mol Sci 2022;23:1719. [PMID: 35163643 DOI: 10.3390/ijms23031719] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Isse FA, El-Sherbeni AA, El-Kadi AOS. The multifaceted role of cytochrome P450-Derived arachidonic acid metabolites in diabetes and diabetic cardiomyopathy. Drug Metab Rev 2022;:1-20. [PMID: 35306928 DOI: 10.1080/03602532.2022.2051045] [Reference Citation Analysis]
13 Ghosh N, Katare R. Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovasc Diabetol 2018;17:43. [PMID: 29566757 DOI: 10.1186/s12933-018-0684-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
14 Deluyker D, Evens L, Bito V. Advanced glycation end products (AGEs) and cardiovascular dysfunction: focus on high molecular weight AGEs. Amino Acids 2017;49:1535-41. [DOI: 10.1007/s00726-017-2464-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
15 Lu J, Dai QM, Ma GS, Zhu YH, Chen B, Li B, Yao YY. Erythropoietin Attenuates Cardiac Dysfunction in Rats by Inhibiting Endoplasmic Reticulum Stress-Induced Diabetic Cardiomyopathy. Cardiovasc Drugs Ther 2017;31:367-79. [PMID: 28779372 DOI: 10.1007/s10557-017-6742-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
16 Lacombe VA. Expression and regulation of facilitative glucose transporters in equine insulin-sensitive tissue: from physiology to pathology. ISRN Vet Sci 2014;2014:409547. [PMID: 24977043 DOI: 10.1155/2014/409547] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
17 Riehle C, Bauersachs J. Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res Cardiol 2018;114:2. [PMID: 30443826 DOI: 10.1007/s00395-018-0711-0] [Cited by in Crossref: 69] [Cited by in F6Publishing: 73] [Article Influence: 17.3] [Reference Citation Analysis]
18 Parriman M, Campolo A, Waller AP, Lacombe VA. Adverse Metabolic Effects of Diltiazem Treatment During Diabetic Cardiomyopathy. J Cardiovasc Pharmacol Ther 2019;24:193-203. [PMID: 30458627 DOI: 10.1177/1074248418808392] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Mather KJ. The vascular endothelium in diabetes--a therapeutic target? Rev Endocr Metab Disord 2013;14:87-99. [PMID: 23397462 DOI: 10.1007/s11154-013-9237-9] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
20 Haye A, Ansari MA, Rahman SO, Shamsi Y, Ahmed D, Sharma M. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape. Eur J Pharmacol 2020;888:173376. [PMID: 32810493 DOI: 10.1016/j.ejphar.2020.173376] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
21 Jaquenod De Giusti C, Palomeque J, Mattiazzi A. Ca2+ mishandling and mitochondrial dysfunction: a converging road to prediabetic and diabetic cardiomyopathy. Pflugers Arch 2022;474:33-61. [PMID: 34978597 DOI: 10.1007/s00424-021-02650-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Hafstad AD, Boardman N, Aasum E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 2015;22:1587-605. [PMID: 25738326 DOI: 10.1089/ars.2015.6304] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 6.1] [Reference Citation Analysis]
23 Gorin Y, Block K. Nox as a target for diabetic complications. Clinical Science 2013;125:361-82. [DOI: 10.1042/cs20130065] [Cited by in Crossref: 83] [Cited by in F6Publishing: 48] [Article Influence: 9.2] [Reference Citation Analysis]
24 Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142:375-415. [PMID: 24462787 DOI: 10.1016/j.pharmthera.2014.01.003] [Cited by in Crossref: 297] [Cited by in F6Publishing: 291] [Article Influence: 37.1] [Reference Citation Analysis]
25 Wang X, Chen XX, Yu HT, Tan Y, Lin Q, Keller BB, Zheng Y, Cai L. Engineered cardiac tissues: a novel in vitro model to investigate the pathophysiology of mouse diabetic cardiomyopathy. Acta Pharmacol Sin 2021;42:932-41. [PMID: 33037406 DOI: 10.1038/s41401-020-00538-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
26 Olaniyi KS, Olatunji LA. Oral ethinylestradiol-levonorgestrel attenuates cardiac glycogen and triglyceride accumulation in high fructose female rats by suppressing pyruvate dehydrogenase kinase-4. Naunyn Schmiedebergs Arch Pharmacol 2019;392:89-101. [PMID: 30276420 DOI: 10.1007/s00210-018-1568-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
27 Salvatore T, Pafundi PC, Galiero R, Albanese G, Di Martino A, Caturano A, Vetrano E, Rinaldi L, Sasso FC. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front Med (Lausanne) 2021;8:695792. [PMID: 34277669 DOI: 10.3389/fmed.2021.695792] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun QY, Lopaschuk GD. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovasc Res 2021:cvab120. [PMID: 33783483 DOI: 10.1093/cvr/cvab120] [Reference Citation Analysis]
29 Horn MA. Cardiac Physiology of Aging: Extracellular Considerations. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 1069-121. [DOI: 10.1002/cphy.c140063] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
30 Tadic M, Cuspidi C, Sljivic A, Andric A, Ivanovic B, Scepanovic R, Ilic I, Jozika L, Marjanovic T, Celic V. Effects of the metabolic syndrome on right heart mechanics and function. Can J Cardiol 2014;30:325-31. [PMID: 24484912 DOI: 10.1016/j.cjca.2013.12.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
31 Hardaway AL, Podgorski I. IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies. Future Med Chem 2013;5:1089-108. [PMID: 23795967 DOI: 10.4155/fmc.13.90] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
32 D’elia JA, Bayliss GP, Weinrauch LA. The Diabetic Cardiorenal Nexus. IJMS 2022;23:7351. [DOI: 10.3390/ijms23137351] [Reference Citation Analysis]
33 Al Kury L, Smail M, Qureshi MA, Sydorenko V, Shmygol A, Oz M, Singh J, Howarth FC. Calcium Signaling in the Ventricular Myocardium of the Goto-Kakizaki Type 2 Diabetic Rat. J Diabetes Res 2018;2018:2974304. [PMID: 29850600 DOI: 10.1155/2018/2974304] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
34 Mapanga RF, Essop MF. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways. American Journal of Physiology-Heart and Circulatory Physiology 2016;310:H153-73. [DOI: 10.1152/ajpheart.00206.2015] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 7.7] [Reference Citation Analysis]
35 Kenny HC, Abel ED. Heart Failure in Type 2 Diabetes Mellitus. Circ Res. 2019;124:121-141. [PMID: 30605420 DOI: 10.1161/circresaha.118.311371] [Cited by in Crossref: 148] [Cited by in F6Publishing: 65] [Article Influence: 49.3] [Reference Citation Analysis]
36 Lee WS, Kim J. Application of Animal Models in Diabetic Cardiomyopathy. Diabetes Metab J 2021;45:129-45. [PMID: 33813812 DOI: 10.4093/dmj.2020.0285] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
37 Salazar J, Navarro C, Ortega Á, Nava M, Morillo D, Torres W, Hernández M, Cabrera M, Angarita L, Ortiz R, Chacín M, D'Marco L, Bermúdez V. Advanced Glycation End Products: New Clinical and Molecular Perspectives. Int J Environ Res Public Health 2021;18:7236. [PMID: 34299683 DOI: 10.3390/ijerph18147236] [Reference Citation Analysis]
38 Das S, Mondal A, Samanta J, Chakraborty S, Sengupta A. Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 2021. [PMID: 34259975 DOI: 10.1007/s11010-021-04223-0] [Reference Citation Analysis]
39 Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014;57:660-671. [PMID: 24477973 DOI: 10.1007/s00125-014-3171-6] [Cited by in Crossref: 421] [Cited by in F6Publishing: 406] [Article Influence: 52.6] [Reference Citation Analysis]
40 Borg DJ, Forbes JM. Targeting advanced glycation with pharmaceutical agents: where are we now? Glycoconj J 2016;33:653-70. [PMID: 27392438 DOI: 10.1007/s10719-016-9691-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
41 Han J, Tan C, Wang Y, Yang S, Tan D. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation. Chemico-Biological Interactions 2015;227:37-44. [DOI: 10.1016/j.cbi.2014.12.032] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
42 Pereira L, Ruiz-Hurtado G, Rueda A, Mercadier JJ, Benitah JP, Gómez AM. Calcium signaling in diabetic cardiomyocytes. Cell Calcium 2014;56:372-80. [PMID: 25205537 DOI: 10.1016/j.ceca.2014.08.004] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 5.8] [Reference Citation Analysis]
43 Fuentes-Antrás J, Picatoste B, Ramírez E, Egido J, Tuñón J, Lorenzo Ó. Targeting metabolic disturbance in the diabetic heart. Cardiovasc Diabetol 2015;14:17. [PMID: 25856422 DOI: 10.1186/s12933-015-0173-8] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 5.0] [Reference Citation Analysis]
44 Palomer X, Aguilar-Recarte D, García R, Nistal JF, Vázquez-Carrera M. Sirtuins: To Be or Not To Be in Diabetic Cardiomyopathy. Trends Mol Med 2021;27:554-71. [PMID: 33839024 DOI: 10.1016/j.molmed.2021.03.004] [Reference Citation Analysis]
45 Toprak C, Yigitaslan S. Alagebrium and Complications of Diabetes Mellitus. Eurasian J Med 2019;51:285-92. [PMID: 31692712 DOI: 10.5152/eurasianjmed.2019.18434] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
46 Khoshhal KI, Sheweita SA, Al-maghamsi MS, Habeb AM. Does type 1 diabetes mellitus affect bone quality in prepubertal children? Journal of Taibah University Medical Sciences 2015;10:300-5. [DOI: 10.1016/j.jtumed.2015.03.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
47 Maria Z, Lacombe VA. Quantification of Cell-Surface Glucose Transporters in the Heart Using a Biotinylated Photolabeling Assay. Methods Mol Biol 2018;1713:229-40. [PMID: 29218529 DOI: 10.1007/978-1-4939-7507-5_17] [Reference Citation Analysis]
48 Sung MM, Hamza SM, Dyck JR. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal 2015;22:1606-30. [PMID: 25808033 DOI: 10.1089/ars.2015.6305] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 4.9] [Reference Citation Analysis]
49 Mishra PK, Ying W, Nandi SS, Bandyopadhyay GK, Patel KK, Mahata SK. Diabetic Cardiomyopathy: An Immunometabolic Perspective. Front Endocrinol (Lausanne) 2017;8:72. [PMID: 28439258 DOI: 10.3389/fendo.2017.00072] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 8.2] [Reference Citation Analysis]
50 Yang L, Zhao D, Ren J, Yang J. Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochim Biophys Acta 2015;1852:209-18. [PMID: 24846717 DOI: 10.1016/j.bbadis.2014.05.006] [Cited by in Crossref: 73] [Cited by in F6Publishing: 75] [Article Influence: 9.1] [Reference Citation Analysis]
51 Bugger H, Bode C. The vulnerable myocardium. Diabetic cardiomyopathy. Hamostaseologie 2015;35:17-24. [PMID: 25408270 DOI: 10.5482/HAMO-14-09-0038] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
52 Kim HR, Jung WK, Park SB, Ryu HY, Kim YH, Kim J. Polydatin Alleviates Diabetes-Induced Hyposalivation through Anti-Glycation Activity in db/db Mouse. Pharmaceutics 2021;14:51. [PMID: 35056946 DOI: 10.3390/pharmaceutics14010051] [Reference Citation Analysis]
53 Maria Z, Campolo AR, Lacombe VA. Diabetes Alters the Expression and Translocation of the Insulin-Sensitive Glucose Transporters 4 and 8 in the Atria. PLoS One. 2015;10:e0146033. [PMID: 26720696 DOI: 10.1371/journal.pone.0146033] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 5.7] [Reference Citation Analysis]
54 Sanajou D, Ghorbani Haghjo A, Argani H, Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur J Pharmacol 2018;833:158-64. [PMID: 29883668 DOI: 10.1016/j.ejphar.2018.06.001] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 18.5] [Reference Citation Analysis]
55 Maria Z, Campolo AR, Scherlag BJ, Ritchey JW, Lacombe VA. Insulin Treatment Reduces Susceptibility to Atrial Fibrillation in Type 1 Diabetic Mice. Front Cardiovasc Med 2020;7:134. [PMID: 32903422 DOI: 10.3389/fcvm.2020.00134] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Luo XM, Yan C, Feng YM. Nanomedicine for the treatment of diabetes-associated cardiovascular diseases and fibrosis. Adv Drug Deliv Rev 2021;172:234-48. [PMID: 33417981 DOI: 10.1016/j.addr.2021.01.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Toprak C, Sirmagul B, Yigitaslan S. Functional Effects of Alagebrium (ALT-711)-Isolated Rat Carotid Artery. Eurasian J Med 2017;49:188-92. [PMID: 29123442 DOI: 10.5152/eurasianjmed.2017.17046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
58 Shi FH, Cheng YS, Dai DZ, Peng HJ, Cong XD, Dai Y. Depressed calcium-handling proteins due to endoplasmic reticulum stress and apoptosis in the diabetic heart are attenuated by argirein. Naunyn Schmiedebergs Arch Pharmacol 2013;386:521-31. [PMID: 23525487 DOI: 10.1007/s00210-013-0852-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
59 Heinzel FR, Hegemann N, Hohendanner F, Primessnig U, Grune J, Blaschke F, de Boer RA, Pieske B, Schiattarella GG, Kuebler WM. Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc Diagn Ther 2020;10:1541-60. [PMID: 33224773 DOI: 10.21037/cdt-20-477] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]