BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fernandes C, Suares D, Yergeri MC. Tumor Microenvironment Targeted Nanotherapy. Front Pharmacol 2018;9:1230. [PMID: 30429787 DOI: 10.3389/fphar.2018.01230] [Cited by in Crossref: 80] [Cited by in F6Publishing: 85] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Mandal D, Kushwaha K, Gupta J. Emerging nano-strategies against tumour microenvironment (TME): a review. OpenNano 2023;9:100112. [DOI: 10.1016/j.onano.2022.100112] [Reference Citation Analysis]
2 Jiang M, Qin B, Li X, Liu Y, Guan G, You J. New advances in pharmaceutical strategies for sensitizing anti-PD-1 immunotherapy and clinical research. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;15:e1837. [PMID: 35929522 DOI: 10.1002/wnan.1837] [Reference Citation Analysis]
3 Qian L, Li Q, Ding Z, Luo K, Su J, Chen J, Zhu G, Gan Z, Yu Q. Prodrug Nanosensitizer Overcomes the Radiation Resistance of Hypoxic Tumor. ACS Appl Mater Interfaces 2022;14:56454-70. [PMID: 36525559 DOI: 10.1021/acsami.2c14628] [Reference Citation Analysis]
4 Feng Q, Xiao K. Nanoparticle-Mediated Delivery of STAT3 Inhibitors in the Treatment of Lung Cancer. Pharmaceutics 2022;14. [PMID: 36559280 DOI: 10.3390/pharmaceutics14122787] [Reference Citation Analysis]
5 Giordano F, Lenna S, Baudo G, Rampado R, Massaro M, De Rosa E, Ewing A, Kurenbekova L, Agostini M, Yustein JT, Taraballi F. Tyrosine kinase inhibitor-loaded biomimetic nanoparticles as a treatment for osteosarcoma. Cancer Nano 2022;13:40. [DOI: 10.1186/s12645-022-00146-7] [Reference Citation Analysis]
6 Smith L, Kuncic Z, Byrne HL, Waddington D. Nanoparticles for MRI-guided radiation therapy: a review. Cancer Nano 2022;13:38. [DOI: 10.1186/s12645-022-00145-8] [Reference Citation Analysis]
7 Wen Y, Hsieh P, Chiu H, Chiang C, Lo C, Chiang Y. Precise delivery of doxorubicin and imiquimod through pH-responsive tumor microenvironment-active targeting micelles for chemo- and immunotherapy. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100482] [Reference Citation Analysis]
8 Gadi V, Gupta D, Shetty S. Emerging Potentials of Nanotherapeutics in Breast Cancer Microenvironment Targeting. OpenNano 2022. [DOI: 10.1016/j.onano.2022.100101] [Reference Citation Analysis]
9 Niveria K, Yadav M, Dangi K, Verma AK. Overcoming challenges to enable targeting of metastatic breast cancer tumour microenvironment with nano-therapeutics: Current status and future perspectives. OpenNano 2022;8:100083. [DOI: 10.1016/j.onano.2022.100083] [Reference Citation Analysis]
10 Kumbhar P, Kole K, Khadake V, Marale P, Manjappa A, Nadaf S, Jadhav R, Patil A, Singh SK, Dua K, Jha NK, Disouza J, Patravale V. Nanoparticulate drugs and vaccines: Breakthroughs and bottlenecks of repurposing in breast cancer. J Control Release 2022;349:812-30. [PMID: 35914614 DOI: 10.1016/j.jconrel.2022.07.039] [Reference Citation Analysis]
11 Lin H, Cao B, Sun Y. Alteration in the Immune Microenvironment Based on APC Status in MSS/pMMR Colon Cancer. Disease Markers 2022;2022:1-24. [DOI: 10.1155/2022/3592990] [Reference Citation Analysis]
12 Kulshrestha R, Singh A, Kumar P, Nair DS, Batra J, Mishra A, Dinda A. Nanoapproach targeting TGFβ1-Smad pathway and modulating lung microenvironment. Process Biochemistry 2022. [DOI: 10.1016/j.procbio.2022.06.027] [Reference Citation Analysis]
13 Ahmed T, Liu FF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Reference Citation Analysis]
14 Kashkooli FM, Rezaeian M, Soltani M. Drug delivery through nanoparticles in solid tumors: a mechanistic understanding. Nanomedicine (Lond) 2022. [PMID: 35451315 DOI: 10.2217/nnm-2021-0126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Dennahy IS, Han Z, Maccuaig WM, Chalfant HM, Condacse A, Hagood JM, Claros-sorto JC, Razaq W, Holter-chakrabarty J, Squires R, Edil BH, Jain A, Mcnally LR. Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics 2022;14:917. [DOI: 10.3390/pharmaceutics14050917] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Tu B, Gao Y, Sun F, Shi M, Huang Y. Lipid Metabolism Regulation Based on Nanotechnology for Enhancement of Tumor Immunity. Front Pharmacol 2022;13:840440. [PMID: 35392570 DOI: 10.3389/fphar.2022.840440] [Reference Citation Analysis]
17 Adeyemi SA, Choonara YE. In Vitro and In Vivo Evaluation of a Cyclic LyP-1-Modified Nanosystem for Targeted Endostatin Delivery in a KYSE-30 Cell Xenograft Athymic Nude Mice Model. Pharmaceuticals 2022;15:353. [DOI: 10.3390/ph15030353] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Steffens Reinhardt L, Moira Morás A, Gustavo Henn J, Ricardo Arantes P, Bernardes Ferro M, Braganhol E, Oliveira de Souza P, de Oliveira Merib J, Ramos Borges G, Silveira Dalanhol C, Cox Holanda de Barros Dias M, Nugent M, Jaqueline Moura D. Nek1-inhibitor and temozolomide-loaded microfibers as a co-therapy strategy for glioblastoma treatment. Int J Pharm 2022;:121584. [PMID: 35202726 DOI: 10.1016/j.ijpharm.2022.121584] [Reference Citation Analysis]
19 Gao L, Song Y, Zhong J, Lin X, Zhou SF, Zhan G. Biocompatible 2D Cu-TCPP Nanosheets Derived from Cu2O Nanocubes as Multifunctional Nanoplatforms for Combined Anticancer Therapy. ACS Biomater Sci Eng 2022. [PMID: 35129963 DOI: 10.1021/acsbiomaterials.1c01430] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Haider M, Elsherbeny A, Pittalà V, Consoli V, Alghamdi MA, Hussain Z, Khoder G, Greish K. Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. IJMS 2022;23:1853. [DOI: 10.3390/ijms23031853] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Garland KM, Sheehy TL, Wilson JT. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chem Rev 2022. [PMID: 35107989 DOI: 10.1021/acs.chemrev.1c00750] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
22 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Yakati V, Vangala S, Madamsetty VS, Banerjee R, Moku G. Enhancing the anticancer effect of paclitaxel by using polymeric nanoparticles decorated with colorectal cancer targeting CPKSNNGVC-peptide. Journal of Drug Delivery Science and Technology 2022;68:103125. [DOI: 10.1016/j.jddst.2022.103125] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Gomes ER, Franco MS. Combining Nanocarrier-Assisted Delivery of Molecules and Radiotherapy. Pharmaceutics 2022;14:105. [PMID: 35057001 DOI: 10.3390/pharmaceutics14010105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Merchant N, Alam A, Peela S, Nagaraju GP. Targeting angiogenesis in hepatocellular carcinoma. Theranostics and Precision Medicine for the Management of Hepatocellular Carcinoma, Volume 2 2022. [DOI: 10.1016/b978-0-323-98807-0.00025-9] [Reference Citation Analysis]
26 Yadav A, Singh S, Sohi H, Dang S. Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment. AAPS PharmSciTech 2021;23:25. [PMID: 34907501 DOI: 10.1208/s12249-021-02174-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
27 Foglietta F, Serpe L, Canaparo R. The Effective Combination between 3D Cancer Models and Stimuli-Responsive Nanoscale Drug Delivery Systems. Cells 2021;10:3295. [PMID: 34943803 DOI: 10.3390/cells10123295] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
28 Kuchroo JR, Hafler DA, Sharpe AH, Lucca LE. The double-edged sword: Harnessing PD-1 blockade in tumor and autoimmunity. Sci Immunol 2021;6:eabf4034. [PMID: 34739340 DOI: 10.1126/sciimmunol.abf4034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Shi J, Sun C, Liang E, Tian B. Semiconductor Nanowire‐Based Cellular and Subcellular Interfaces. Adv Funct Materials 2022;32:2107997. [DOI: 10.1002/adfm.202107997] [Reference Citation Analysis]
30 Li M, Li H, Zhou C, Li X, Gong J, Chen C, Zhang Y. Comprehensive analysis of prognostic immune-related genes in the tumor microenvironment of hepatocellular carcinoma (HCC). Medicine (Baltimore) 2021;100:e27332. [PMID: 34596136 DOI: 10.1097/MD.0000000000027332] [Reference Citation Analysis]
31 Ghosh S, Javia A, Shetty S, Bardoliwala D, Maiti K, Banerjee S, Khopade A, Misra A, Sawant K, Bhowmick S. Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021;337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
32 Yunna C, Mengru H, Fengling W, Lei W, Weidong C. Emerging strategies against tumor-associated fibroblast for improved the penetration of nanoparticle into desmoplastic tumor. Eur J Pharm Biopharm 2021;165:75-83. [PMID: 33991610 DOI: 10.1016/j.ejpb.2021.05.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Wimalasiri VW, Dunuweera SP, Dunuweera AN, Rajapakse RMG. Noyes-Whitney Dissolution Model-Based pH-Sensitive Slow Release of Paclitaxel (Taxol) from Human Hair-Derived Keratin Microparticle Carriers. Biomed Res Int 2021;2021:6657482. [PMID: 34046500 DOI: 10.1155/2021/6657482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 L. Hall F, M. Gordon E. Our Journey Beyond Sunset Boulevard: Evidence-Based Analysis of Tumor-Targeted Cancer Gene Therapy Shines a Critical Spotlight on Long-Term Cancer-Free Survival. Our Journey Beyond Sunset Boulevard - Evidence-based Analysis of Tumor-Targeted Gene- and Immuno-Therapies Shine a Critical Spotlight on “True” Long-Term Cancer-Free Survival 2021. [DOI: 10.5772/intechopen.97057] [Reference Citation Analysis]
35 Moin A, Rizvi SMD, Hussain T, Gowda DV, Subaiea GM, Elsayed MMA, Ansari M, Alanazi AS, Yadav H. Current Status of Brain Tumor in the Kingdom of Saudi Arabia and Application of Nanobiotechnology for Its Treatment: A Comprehensive Review. Life (Basel) 2021;11:421. [PMID: 34063122 DOI: 10.3390/life11050421] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
36 Kong X, Xu J, Yang X, Zhai Y, Ji J, Zhai G. Progress in tumour-targeted drug delivery based on cell-penetrating peptides. J Drug Target 2021;:1-15. [PMID: 33944641 DOI: 10.1080/1061186X.2021.1920026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Fulfager AD, Yadav KS. Understanding the implications of co-delivering therapeutic agents in a nanocarrier to combat multidrug resistance (MDR) in breast cancer. Journal of Drug Delivery Science and Technology 2021;62:102405. [DOI: 10.1016/j.jddst.2021.102405] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
38 Badr-Eldin SM, Alhakamy NA, Fahmy UA, Ahmed OAA, Asfour HZ, Althagafi AA, Aldawsari HM, Rizg WY, Mahdi WA, Alghaith AF, Alshehri S, Caraci F, Caruso G. Cytotoxic and Pro-Apoptotic Effects of a Sub-Toxic Concentration of Fluvastatin on OVCAR3 Ovarian Cancer Cells After its Optimized Formulation to Melittin Nano-Conjugates. Front Pharmacol 2020;11:642171. [PMID: 33633571 DOI: 10.3389/fphar.2020.642171] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
39 Liu X, Shan K, Shao X, Shi X, He Y, Liu Z, Jacob JA, Deng L. Nanotoxic Effects of Silver Nanoparticles on Normal HEK-293 Cells in Comparison to Cancerous HeLa Cell Line. Int J Nanomedicine 2021;16:753-61. [PMID: 33568905 DOI: 10.2147/IJN.S289008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
40 Janapati YK, Junapudi S, Dachani SR. Overview of Nano-Strategies for Combating Cancer. Handbook of Research on Nano-Strategies for Combatting Antimicrobial Resistance and Cancer 2021. [DOI: 10.4018/978-1-7998-5049-6.ch012] [Reference Citation Analysis]
41 Cavalcanti IDL, Soares JCS. Application of Pharmaceutical Nanotechnology in the Treatment of Cancer. Advances in Cancer Treatment 2021. [DOI: 10.1007/978-3-030-68334-4_7] [Reference Citation Analysis]
42 Abreu TR, Biscaia M, Gonçalves N, Fonseca NA, Moreira JN. In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles. Adv Exp Med Biol 2021;1295:271-99. [PMID: 33543464 DOI: 10.1007/978-3-030-58174-9_12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
43 Singh VK, Singh V, Tyagi V. Recent Update on Nanomedicine-Based Drug Targeting on Colon Cancer. Colon Cancer Diagnosis and Therapy 2021. [DOI: 10.1007/978-3-030-64668-4_14] [Reference Citation Analysis]
44 Bano F, Fakhri KU, Rizvi MMA. Targeted Drug Delivery in Cancer Treatment. Handbook of Research on Advancements in Cancer Therapeutics 2021. [DOI: 10.4018/978-1-7998-6530-8.ch012] [Reference Citation Analysis]
45 Vergallo C, Hafeez MN, Iannotta D, Santos HA, D'Avanzo N, Dini L, Cilurzo F, Fresta M, Di Marzio L, Christian C. Conventional Nanosized Drug Delivery Systems for Cancer Applications. Adv Exp Med Biol 2021;1295:3-27. [PMID: 33543453 DOI: 10.1007/978-3-030-58174-9_1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
46 Jain S, Raza K, Agrawal AK, Vaidya A. EPR effect and its implications in passive targeting of nanocarriers to tumors. Nanotechnology Applications for Cancer Chemotherapy 2021. [DOI: 10.1016/b978-0-12-817846-1.00002-3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Dahiya S, Dahiya R. Organic nanocarriers for targeted delivery of anticancer agents. Advanced Drug Delivery Systems in the Management of Cancer 2021. [DOI: 10.1016/b978-0-323-85503-7.00010-9] [Reference Citation Analysis]
48 Sachdeva H, Raj Khandelwal A, Meena R, Sharma K, Khatik N. Graphene-based nanomaterials for cancer therapy. Materials Today: Proceedings 2021;43:2954-2957. [DOI: 10.1016/j.matpr.2021.01.314] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Prabhu P. Tumoral delivery of nanotherapeutics. Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications 2021. [DOI: 10.1016/b978-0-12-821013-0.00024-6] [Reference Citation Analysis]
50 Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D’amone E, Gigli G, Albanese C, Rodriguez O, del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. Nanotechnology 2021;32:062001. [DOI: 10.1088/1361-6528/abc208] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
51 Ramos-Gomes F, Ferreira N, Kraupner A, Alves F, Markus MA. Ex vivo Live Cell Imaging of Nanoparticle-Cell Interactions in the Mouse Lung. Front Bioeng Biotechnol 2020;8:588922. [PMID: 33195152 DOI: 10.3389/fbioe.2020.588922] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
52 Gao L, Wu Z, Ibrahim AR, Zhou SF, Zhan G. Fabrication of Folic Acid-Decorated Hollow ZIF-8/Au/CuS Nanocomposites for Enhanced and Selective Anticancer Therapy. ACS Biomater Sci Eng 2020;6:6095-107. [PMID: 33449663 DOI: 10.1021/acsbiomaterials.0c01152] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
53 Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv 2021;18:205-27. [PMID: 32969740 DOI: 10.1080/17425247.2021.1828339] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
54 Jovčevska I, Muyldermans S. The Therapeutic Potential of Nanobodies. BioDrugs 2020;34:11-26. [PMID: 31686399 DOI: 10.1007/s40259-019-00392-z] [Cited by in Crossref: 256] [Cited by in F6Publishing: 265] [Article Influence: 85.3] [Reference Citation Analysis]
55 Jnaidi R, Almeida AJ, Gonçalves LM. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Smart Drug Delivery Systems in the Treatment of Glioblastoma Multiforme. Pharmaceutics 2020;12:E860. [PMID: 32927610 DOI: 10.3390/pharmaceutics12090860] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
56 Chen M, Hu J, Bian C, Zhu C, Chen C, Guo Z, Zhang Z, Agyekum GA, Zhang Z, Cao X. pH-Responsive and Biodegradable ZnO-Capped Mesoporous Silica Composite Nanoparticles for Drug Delivery. Materials (Basel) 2020;13:E3950. [PMID: 32906723 DOI: 10.3390/ma13183950] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
57 Chen M, Hu J, Wang L, Li Y, Zhu C, Chen C, Shi M, Ju Z, Cao X, Zhang Z. Targeted and redox-responsive drug delivery systems based on carbonic anhydrase IX-decorated mesoporous silica nanoparticles for cancer therapy. Sci Rep 2020;10:14447. [PMID: 32879359 DOI: 10.1038/s41598-020-71071-1] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
58 Sharma H, Mondal S. Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. Int J Mol Sci 2020;21:E6280. [PMID: 32872646 DOI: 10.3390/ijms21176280] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 13.7] [Reference Citation Analysis]
59 Yang C, Merlin D. Lipid-Based Drug Delivery Nanoplatforms for Colorectal Cancer Therapy. Nanomaterials (Basel) 2020;10:E1424. [PMID: 32708193 DOI: 10.3390/nano10071424] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
60 Abd-Aziz N, Kamaruzman NI, Poh CL. Development of MicroRNAs as Potential Therapeutics against Cancer. J Oncol 2020;2020:8029721. [PMID: 32733559 DOI: 10.1155/2020/8029721] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
61 Ihsanullah KM, Kumar BN, Zhao Y, Muhammad H, Liu Y, Wang L, Liu H, Jiang W. Stepwise-activatable hypoxia triggered nanocarrier-based photodynamic therapy for effective synergistic bioreductive chemotherapy. Biomaterials 2020;245:119982. [DOI: 10.1016/j.biomaterials.2020.119982] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 11.3] [Reference Citation Analysis]
62 Acebes-Fernández V, Landeria-Viñuela A, Juanes-Velasco P, Hernández AP, Otazo-Perez A, Manzano-Román R, Gongora R, Fuentes M. Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. Nanomaterials (Basel) 2020;10:E1274. [PMID: 32610601 DOI: 10.3390/nano10071274] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
63 Samson AAS, Hong S, Purushothaman B, Lee J, Song JM. Transparent tumor microenvironment: Are liposomal nanoparticles sufficient for drug delivery to hypoxic regions and clonogenic cells? Applied Materials Today 2020;19:100561. [DOI: 10.1016/j.apmt.2020.100561] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
64 Bonifácio VDB. Ovarian Cancer Biomarkers: Moving Forward in Early Detection. Adv Exp Med Biol 2020;1219:355-63. [PMID: 32130708 DOI: 10.1007/978-3-030-34025-4_18] [Cited by in Crossref: 34] [Cited by in F6Publishing: 8] [Article Influence: 11.3] [Reference Citation Analysis]
65 Paiva I, Mattingly S, Wuest M, Leier S, Vakili MR, Weinfeld M, Lavasanifar A, Wuest F. Synthesis and Analysis of 64 Cu-Labeled GE11-Modified Polymeric Micellar Nanoparticles for EGFR-Targeted Molecular Imaging in a Colorectal Cancer Model. Mol Pharmaceutics 2020;17:1470-81. [DOI: 10.1021/acs.molpharmaceut.9b01043] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
66 Akbari N, Ghorbani M, Salimi V, Alimohammadi A, Khamseh ME, Akbari H, Nourbakhsh M, Sheikhi A, Taghavi SF, Tavakoli-Yaraki M. Cyclooxygenase enzyme and PGE2 expression in patients with functional and non-functional pituitary adenomas. BMC Endocr Disord 2020;20:39. [PMID: 32171274 DOI: 10.1186/s12902-020-0515-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
67 Perini MV, Dmello RS, Nero TL, Chand AL. Evaluating the benefits of renin-angiotensin system inhibitors as cancer treatments. Pharmacol Ther 2020;211:107527. [PMID: 32173557 DOI: 10.1016/j.pharmthera.2020.107527] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
68 Guo J, Zeng H, Chen Y. Emerging Nano Drug Delivery Systems Targeting Cancer-Associated Fibroblasts for Improved Antitumor Effect and Tumor Drug Penetration. Mol Pharmaceutics 2020;17:1028-48. [DOI: 10.1021/acs.molpharmaceut.0c00014] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
69 Alfaifi MY, Shati AA, Elbehairi SEI, Fahmy UA, Alhakamy NA, Md S. Anti-tumor effect of PEG-coated PLGA nanoparticles of febuxostat on A549 non-small cell lung cancer cells. 3 Biotech 2020;10:133. [PMID: 32154046 DOI: 10.1007/s13205-020-2077-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
70 Cai X, Jiang Y, Lin M, Zhang J, Guo H, Yang F, Leung W, Xu C. Ultrasound-Responsive Materials for Drug/Gene Delivery. Front Pharmacol 2019;10:1650. [PMID: 32082157 DOI: 10.3389/fphar.2019.01650] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 11.7] [Reference Citation Analysis]
71 Alphandéry E. Nano-Therapies for Glioblastoma Treatment. Cancers (Basel) 2020;12:E242. [PMID: 31963825 DOI: 10.3390/cancers12010242] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 15.0] [Reference Citation Analysis]
72 Pereira-Silva M, Alvarez-Lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A. Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur J Pharm Biopharm 2020;148:88-106. [PMID: 31958514 DOI: 10.1016/j.ejpb.2019.10.013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
73 Vilches C, Quidant R. Targeted hyperthermia with plasmonic nanoparticles. Frontiers of Nanoscience 2020. [DOI: 10.1016/b978-0-08-102828-5.00012-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
74 Pranjol ZI, Whatmore JL. Cathepsin D in the Tumor Microenvironment of Breast and Ovarian Cancers. Adv Exp Med Biol 2020;1259:1-16. [PMID: 32578168 DOI: 10.1007/978-3-030-43093-1_1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
75 Guevara ML, Persano F, Persano S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol 2021;69:238-48. [PMID: 31883449 DOI: 10.1016/j.semcancer.2019.11.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
76 Nana ABA, Marimuthu T, Kondiah PPD, Choonara YE, Du Toit LC, Pillay V. Multifunctional Magnetic Nanowires: Design, Fabrication, and Future Prospects as Cancer Therapeutics. Cancers (Basel) 2019;11:E1956. [PMID: 31817598 DOI: 10.3390/cancers11121956] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
77 Kwon YM, Je JY, Cha SH, Oh Y, Cho WH. Synergistic combination of chemo‑phototherapy based on temozolomide/ICG‑loaded iron oxide nanoparticles for brain cancer treatment. Oncol Rep 2019;42:1709-24. [PMID: 31436296 DOI: 10.3892/or.2019.7289] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
78 Guo Z, Ouyang J, Kim NY, Shi J, Ji X. Emerging Two‐Dimensional Nanomaterials for Cancer Therapy. ChemPhysChem 2019;20:2417-33. [DOI: 10.1002/cphc.201900551] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
79 Wang J, Meng F, Kim BK, Ke X, Yeo Y. In-vitro and in-vivo difference in gene delivery by lithocholic acid-polyethyleneimine conjugate. Biomaterials 2019;217:119296. [PMID: 31254934 DOI: 10.1016/j.biomaterials.2019.119296] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
80 Fernandes C, Prabhu P, Juvale K, Suares D, Yc M. Cancer cell fusion: a potential target to tackle drug-resistant and metastatic cancer cells. Drug Discov Today 2019;24:1836-44. [PMID: 31163272 DOI: 10.1016/j.drudis.2019.05.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
81 Lopes TS, Alves GG, Pereira MR, Granjeiro JM, Leite PEC. Advances and potential application of gold nanoparticles in nanomedicine. J Cell Biochem 2019;120:16370-8. [DOI: 10.1002/jcb.29044] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
82 Zottel A, Videtič Paska A, Jovčevska I. Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research, Diagnosis and Therapy. Materials (Basel) 2019;12:E1588. [PMID: 31096609 DOI: 10.3390/ma12101588] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 16.8] [Reference Citation Analysis]
83 Cherukula K, Uthaman S, Park IK. "Navigate-dock-activate" anti-tumor strategy: Tumor micromilieu charge-switchable, hierarchically activated nanoplatform with ultrarapid tumor-tropic accumulation for trackable photothermal/chemotherapy. Theranostics 2019;9:2505-25. [PMID: 31131050 DOI: 10.7150/thno.33280] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
84 Singaraju AB, Bahl D, Stevens LL. Brillouin Light Scattering: Development of a Near Century-Old Technique for Characterizing the Mechanical Properties of Materials. AAPS PharmSciTech 2019;20:109. [PMID: 30746575 DOI: 10.1208/s12249-019-1311-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
85 De Matos R, Vuilleumier J, Mas C, Constant S, Staedler D, Gerber-lemaire S. Inhibitor-conjugated harmonic nanoparticles targeting fibroblast activation protein. RSC Adv 2019;9:31659-69. [DOI: 10.1039/c9ra05299b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]