BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Langhans SA. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front Pharmacol. 2018;9:6. [PMID: 29410625 DOI: 10.3389/fphar.2018.00006] [Cited by in Crossref: 408] [Cited by in F6Publishing: 531] [Article Influence: 102.0] [Reference Citation Analysis]
Number Citing Articles
1 Shima F, Makino T. Construction of brain-like spheroids containing endothelial tubular networks by an adhesive culture system. Biochemical and Biophysical Research Communications 2022;623:176-80. [DOI: 10.1016/j.bbrc.2022.07.063] [Reference Citation Analysis]
2 Kim IY, Choi JW, Kwon IH, Hwangbo S, Bae S, Kwak M, Kim J, Lee TG, Heo MB. Variations in in vitro toxicity of silica nanoparticles according to scaffold type in a 3D culture system using a micropillar/microwell chip platform. Sensors and Actuators B: Chemical 2022;369:132328. [DOI: 10.1016/j.snb.2022.132328] [Reference Citation Analysis]
3 Abdelrahim AA, Hong S, Song JM. Integrative In Situ Photodynamic Therapy-Induced Cell Death Measurement of 3D-Bioprinted MCF-7 Tumor Spheroids. Anal Chem 2022. [PMID: 36167500 DOI: 10.1021/acs.analchem.2c03022] [Reference Citation Analysis]
4 Vesuna F, Penet MF, Mori N, Bhujwalla ZM, Raman V. Twist alters the breast tumor microenvironment via choline kinase to facilitate an aggressive phenotype. Mol Cell Biochem 2022. [PMID: 36136285 DOI: 10.1007/s11010-022-04555-5] [Reference Citation Analysis]
5 Yang Y, Huang C, Zheng H, Meng Z, Heng BC, Zhou T, Jiang S, Wei Y. Superwettable and injectable GelMA-MSC microspheres promote cartilage repair in temporomandibular joints. Front Bioeng Biotechnol 2022;10:1026911. [DOI: 10.3389/fbioe.2022.1026911] [Reference Citation Analysis]
6 Pitsalidis C, van Niekerk D, Moysidou C, Boys AJ, Withers A, Vallet R, Owens RM. Organic electronic transmembrane device for hosting and monitoring 3D cell cultures. Sci Adv 2022;8:eabo4761. [DOI: 10.1126/sciadv.abo4761] [Reference Citation Analysis]
7 Shah L, Latif A, Williams KJ, Tirella A. Role of stiffness and physico-chemical properties of tumour microenvironment on breast cancer cell stemness. Acta Biomater 2022:S1742-7061(22)00557-8. [PMID: 36087866 DOI: 10.1016/j.actbio.2022.08.074] [Reference Citation Analysis]
8 Trossmann VT, Heltmann-Meyer S, Amouei H, Wajant H, Horch RE, Steiner D, Scheibel T. Recombinant Spider Silk Bioinks for Continuous Protein Release by Encapsulated Producer Cells. Biomacromolecules 2022. [PMID: 36067476 DOI: 10.1021/acs.biomac.2c00971] [Reference Citation Analysis]
9 Tran HN, Gautam V. Micro/nano devices for integration with human brain organoids. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114750] [Reference Citation Analysis]
10 Tran HN, Gautam V. Micro- and nanodevices for integration with human brain organoids. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114734] [Reference Citation Analysis]
11 Liu M, Xiang Y, Yang Y, Long X, Xiao Z, Nan Y, Jiang Y, Qiu Y, Huang Q, Ai K. State-of-the-art advancements in Liver-on-a-chip (LOC): Integrated biosensors for LOC. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114758] [Reference Citation Analysis]
12 Koblenzer M, Weiler M, Fragoulis A, Rütten S, Pufe T, Jahr H. Physiological Mineralization during In Vitro Osteogenesis in a Biomimetic Spheroid Culture Model. Cells 2022;11:2702. [DOI: 10.3390/cells11172702] [Reference Citation Analysis]
13 Bhusal A, Dogan E, Nieto D, Mousavi Shaegh SA, Cecen B, Miri AK. 3D Bioprinted Hydrogel Microfluidic Devices for Parallel Drug Screening. ACS Appl Bio Mater 2022. [PMID: 36037061 DOI: 10.1021/acsabm.2c00578] [Reference Citation Analysis]
14 Fernández‐costa JM, Ortega MA, Rodríguez‐comas J, Lopez‐muñoz G, Yeste J, Mangas‐florencio L, Fernández‐gonzález M, Martin‐lasierra E, Tejedera‐villafranca A, Ramon‐azcon J. Training‐on‐a‐Chip: A Multi‐Organ Device to Study the Effect of Muscle Exercise on Insulin Secretion in Vitro. Adv Materials Technologies. [DOI: 10.1002/admt.202200873] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Joddar B, Natividad-Diaz SL, Padilla AE, Esparza AA, Ramirez SP, Chambers DR, Ibaroudene H. Engineering Approaches for Cardiac Organoid formation and their characterization. Transl Res 2022:S1931-5244(22)00182-7. [PMID: 35995380 DOI: 10.1016/j.trsl.2022.08.009] [Reference Citation Analysis]
16 Kawakita S, Mandal K, Mou L, Mecwan MM, Zhu Y, Li S, Sharma S, Hernandez AL, Nguyen HT, Maity S, de Barros NR, Nakayama A, Bandaru P, Ahadian S, Kim HJ, Herculano RD, Holler E, Jucaud V, Dokmeci MR, Khademhosseini A. Organ-On-A-Chip Models of the Blood-Brain Barrier: Recent Advances and Future Prospects. Small 2022;:e2201401. [PMID: 35978444 DOI: 10.1002/smll.202201401] [Reference Citation Analysis]
17 Lee SY, Hwang HJ, Ku B, Lee DW. Cell Proliferation Receptor-Enhanced 3D High-Throughput Screening Model for Optimized Drug Efficacy Evaluation in Breast Cancer Cells. Anal Chem 2022. [PMID: 35977405 DOI: 10.1021/acs.analchem.2c02222] [Reference Citation Analysis]
18 Yan J, Li Z, Guo J, Liu S, Guo J. Organ-on-a-chip: A new tool for in vitro research. Biosens Bioelectron 2022;216:114626. [PMID: 35969963 DOI: 10.1016/j.bios.2022.114626] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Choi NY, Lee M, Jeong S. Recent Advances in 3D-Cultured Brain Tissue Models Derived from Human iPSCs. BioChip J. [DOI: 10.1007/s13206-022-00075-y] [Reference Citation Analysis]
20 Millet M, Bollmann E, Ringuette Goulet C, Bernard G, Chabaud S, Huot MÉ, Pouliot F, Bolduc S, Bordeleau F. Cancer-Associated Fibroblasts in a 3D Engineered Tissue Model Induce Tumor-like Matrix Stiffening and EMT Transition. Cancers (Basel) 2022;14:3810. [PMID: 35954473 DOI: 10.3390/cancers14153810] [Reference Citation Analysis]
21 Moya-garcia CR, Okuyama H, Sadeghi N, Li J, Tabrizian M, Li-jessen NYK. In vitro models for head and neck cancer: Current status and future perspective. Front Oncol 2022;12:960340. [DOI: 10.3389/fonc.2022.960340] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Cook CJ, Miller AE, Barker TH, Di Y, Fogg KC. Characterizing the extracellular matrix transcriptome of cervical, endometrial, and uterine cancers. Matrix Biol Plus 2022;15:100117. [PMID: 35898192 DOI: 10.1016/j.mbplus.2022.100117] [Reference Citation Analysis]
23 Badr-eldin SM, Aldawsari HM, Kotta S, Deb PK, Venugopala KN. Three-Dimensional In Vitro Cell Culture Models for Efficient Drug Discovery: Progress So Far and Future Prospects. Pharmaceuticals 2022;15:926. [DOI: 10.3390/ph15080926] [Reference Citation Analysis]
24 Jeng G, Yeh C, Lee C, Yang Y, Tseng L, Li P. Ultrasound shear-wave computed tomography for elasticity imaging. Appl Phys Lett 2022;121:043702. [DOI: 10.1063/5.0100628] [Reference Citation Analysis]
25 Malhão F, Macedo AC, Ramos AA, Rocha E. Morphometrical, Morphological, and Immunocytochemical Characterization of a Tool for Cytotoxicity Research: 3D Cultures of Breast Cell Lines Grown in Ultra-Low Attachment Plates. Toxics 2022;10:415. [PMID: 35893848 DOI: 10.3390/toxics10080415] [Reference Citation Analysis]
26 Cacciamali A, Villa R, Dotti S. 3D Cell Cultures: Evolution of an Ancient Tool for New Applications. Front Physiol 2022;13:836480. [DOI: 10.3389/fphys.2022.836480] [Reference Citation Analysis]
27 Parekh A, Das S, Das CK, Mandal M. Progressing Towards a Human-Centric Approach in Cancer Research. Front Oncol 2022;12:896633. [DOI: 10.3389/fonc.2022.896633] [Reference Citation Analysis]
28 Akinjiyan FA, Dave RM, Alpert E, Longmore GD, Fuh KC. DDR2 Expression in Cancer-Associated Fibroblasts Promotes Ovarian Cancer Tumor Invasion and Metastasis through Periostin-ITGB1. Cancers 2022;14:3482. [DOI: 10.3390/cancers14143482] [Reference Citation Analysis]
29 Aiyappa-Maudsley R, Elsalem L, Ibrahim AIM, Pors K, Martin SG. In vitro radiosensitization of breast cancer with hypoxia-activated prodrugs. J Cell Mol Med 2022. [PMID: 35841287 DOI: 10.1111/jcmm.17486] [Reference Citation Analysis]
30 Jafarzadeh E, Soodi M, Tiraihi T, Zarei M, Qasemian-Lemraski M. Study of lead-induced neurotoxicity in cholinergic cells differentiated from bone marrow-derived mesenchymal stem cells. Toxicol Ind Health 2022;:7482337221115514. [PMID: 35838060 DOI: 10.1177/07482337221115514] [Reference Citation Analysis]
31 Maietta I, Martínez-pérez A, Álvarez R, De Lera ÁR, González-fernández Á, Simón-vázquez R. Synergistic Antitumoral Effect of Epigenetic Inhibitors and Gemcitabine in Pancreatic Cancer Cells. Pharmaceuticals 2022;15:824. [DOI: 10.3390/ph15070824] [Reference Citation Analysis]
32 Lee SY, Lee JW. 3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair. Life (Basel) 2022;12:939. [PMID: 35888029 DOI: 10.3390/life12070939] [Reference Citation Analysis]
33 Romano V, Ruocco MR, Carotenuto P, Barbato A, Venuta A, Acampora V, De Lella S, Vigliar E, Iaccarino A, Troncone G, Calì G, Insabato L, Russo D, Franco B, Masone S, Velotti N, Accurso A, Pellegrino T, Fiume G, Belviso I, Montagnani S, Avagliano A, Arcucci A. Generation and Characterization of a Tumor Stromal Microenvironment and Analysis of Its Interplay with Breast Cancer Cells: An In Vitro Model to Study Breast Cancer-Associated Fibroblast Inactivation. Int J Mol Sci 2022;23:6875. [PMID: 35743318 DOI: 10.3390/ijms23126875] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Taiarol L, Bigogno C, Sesana S, Kravicz M, Viale F, Pozzi E, Monza L, Carozzi VA, Meregalli C, Valtorta S, Moresco RM, Koch M, Barbugian F, Russo L, Dondio G, Steinkühler C, Re F. Givinostat-Liposomes: Anti-Tumor Effect on 2D and 3D Glioblastoma Models and Pharmacokinetics. Cancers (Basel) 2022;14:2978. [PMID: 35740641 DOI: 10.3390/cancers14122978] [Reference Citation Analysis]
35 Ciucci A, Buttarelli M, Fagotti A, Scambia G, Gallo D. Preclinical models of epithelial ovarian cancer: practical considerations and challenges for a meaningful application. Cell Mol Life Sci 2022;79:364. [PMID: 35705879 DOI: 10.1007/s00018-022-04395-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 De S, Singh N. Advancements in Three Dimensional In-Vitro Cell Culture Models. Chem Rec 2022;:e202200058. [PMID: 35701102 DOI: 10.1002/tcr.202200058] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Yavvari P, Laporte A, Elomaa L, Schraufstetter F, Pacharzina I, Daberkow AD, Hoppensack A, Weinhart M. 3D-Cultured Vascular-Like Networks Enable Validation of Vascular Disruption Properties of Drugs In Vitro. Front Bioeng Biotechnol 2022;10:888492. [DOI: 10.3389/fbioe.2022.888492] [Reference Citation Analysis]
38 Bouhlel W, Kui J, Bibette J, Bremond N. Encapsulation of Cells in a Collagen Matrix Surrounded by an Alginate Hydrogel Shell for 3D Cell Culture. ACS Biomater Sci Eng 2022;8:2700-8. [PMID: 35609296 DOI: 10.1021/acsbiomaterials.1c01486] [Reference Citation Analysis]
39 Roman M, Hwang E, Sweet-Cordero EA. Synthetic Vulnerabilities in the KRAS Pathway. Cancers (Basel) 2022;14:2837. [PMID: 35740503 DOI: 10.3390/cancers14122837] [Reference Citation Analysis]
40 Kim DE, Lee YB, Shim HE, Song JJ, Han JS, Moon KS, Huh KM, Kang SW. Application of Hexanoyl Glycol Chitosan as a Non-cell Adhesive Polymer in Three-Dimensional Cell Culture. ACS Omega 2022;7:18471-80. [PMID: 35694497 DOI: 10.1021/acsomega.2c00890] [Reference Citation Analysis]
41 Gupta K, Jones JC, Farias VA, Mackeyev Y, Singh PK, Quiñones-Hinojosa A, Krishnan S. Identification of Synergistic Drug Combinations to Target KRAS-Driven Chemoradioresistant Cancers Utilizing Tumoroid Models of Colorectal Adenocarcinoma and Recurrent Glioblastoma. Front Oncol 2022;12:840241. [PMID: 35664781 DOI: 10.3389/fonc.2022.840241] [Reference Citation Analysis]
42 Poornima K, Francis AP, Hoda M, Eladl MA, Subramanian S, Veeraraghavan VP, El-Sherbiny M, Asseri SM, Hussamuldin ABA, Surapaneni KM, Mony U, Rajagopalan R. Implications of Three-Dimensional Cell Culture in Cancer Therapeutic Research. Front Oncol 2022;12:891673. [PMID: 35646714 DOI: 10.3389/fonc.2022.891673] [Reference Citation Analysis]
43 Zhu S, Bai Q, Li L, Xu T. Drug repositioning in drug discovery of T2DM and repositioning potential of antidiabetic agents. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.05.057] [Reference Citation Analysis]
44 Jariwala N, Ozols M, Bell M, Bradley E, Gilmore A, Debelle L, Sherratt MJ. Matrikines as mediators of tissue remodelling. Adv Drug Deliv Rev 2022;185:114240. [PMID: 35378216 DOI: 10.1016/j.addr.2022.114240] [Reference Citation Analysis]
45 Singh D, Mathur A, Arora S, Roy S, Mahindroo N. Journey of organ on a chip technology and its role in future healthcare scenario. Applied Surface Science Advances 2022;9:100246. [DOI: 10.1016/j.apsadv.2022.100246] [Reference Citation Analysis]
46 Thakur G, Bok EY, Kim SB, Jo CH, Oh SJ, Baek JC, Park JE, Kang YH, Lee SL, Kumar R, Rho GJ. Scaffold-free 3D culturing enhance pluripotency, immunomodulatory factors, and differentiation potential of Wharton's jelly-mesenchymal stem cells. Eur J Cell Biol 2022;101:151245. [PMID: 35667339 DOI: 10.1016/j.ejcb.2022.151245] [Reference Citation Analysis]
47 Law AMK, Chen J, Colino-Sanguino Y, Fuente LR, Fang G, Grimes SM, Lu H, Huang RJ, Boyle ST, Venhuizen J, Castillo L, Tavakoli J, Skhinas JN, Millar EKA, Beretov J, Rossello FJ, Tipper JL, Ormandy CJ, Samuel MS, Cox TR, Martelotto L, Jin D, Valdes-Mora F, Ji HP, Gallego-Ortega D. ALTEN: A High-Fidelity Primary Tissue-Engineering Platform to Assess Cellular Responses Ex Vivo. Adv Sci (Weinh) 2022;:e2103332. [PMID: 35611998 DOI: 10.1002/advs.202103332] [Reference Citation Analysis]
48 Mai P, Hampl J, Baca M, Brauer D, Singh S, Weise F, Borowiec J, Schmidt A, Küstner JM, Klett M, Gebinoga M, Schroeder IS, Markert UR, Glahn F, Schumann B, Eckstein D, Schober A. MatriGrid® Based Biological Morphologies: Tools for 3D Cell Culturing. Bioengineering 2022;9:220. [DOI: 10.3390/bioengineering9050220] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Limongi T, Guzzi F, Parrotta E, Candeloro P, Scalise S, Lucchino V, Gentile F, Tirinato L, Coluccio ML, Torre B, Allione M, Marini M, Susa F, Fabrizio ED, Cuda G, Perozziello G. Microfluidics for 3D Cell and Tissue Cultures: Microfabricative and Ethical Aspects Updates. Cells 2022;11:1699. [DOI: 10.3390/cells11101699] [Reference Citation Analysis]
50 Machahua C, Vicens-Zygmunt V, Ríos-Martín J, Llatjós R, Escobar-Campuzano I, Molina-Molina M, Montes-Worboys A. Collagen 3D matrices as a model for the study of cell behavior in pulmonary fibrosis. Exp Lung Res 2022;:1-11. [PMID: 35594338 DOI: 10.1080/01902148.2022.2067265] [Reference Citation Analysis]
51 Lee YJ, Ahn YJ, Lee GJ. Cytotoxicity evaluation of sodium lauryl sulfate in a paper-based 3D cell culture system. Anal Methods 2022;14:1755-64. [PMID: 35355024 DOI: 10.1039/d2ay00161f] [Reference Citation Analysis]
52 Kawasaki M, Goyama T, Tachibana Y, Nagao I, Ambrosini YM. Farm and Companion Animal Organoid Models in Translational Research: A Powerful Tool to Bridge the Gap Between Mice and Humans. Front Med Technol 2022;4:895379. [DOI: 10.3389/fmedt.2022.895379] [Reference Citation Analysis]
53 Kato-Negishi M, Sawayama J, Kawahara M, Takeuchi S. Cell fiber-based 3D tissue array for drug response assay. Sci Rep 2022;12:7870. [PMID: 35552465 DOI: 10.1038/s41598-022-11670-2] [Reference Citation Analysis]
54 Seitlinger J, Nounsi A, Idoux-gillet Y, Santos Pujol E, Lê H, Grandgirard E, Olland A, Lindner V, Zaupa C, Balloul J, Quemeneur E, Massard G, Falcoz P, Hua G, Benkirane-jessel N. Vascularization of Patient-Derived Tumoroid from Non-Small-Cell Lung Cancer and Its Microenvironment. Biomedicines 2022;10:1103. [DOI: 10.3390/biomedicines10051103] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Brooks IR, Garrone CM, Kerins C, Kiar CS, Syntaka S, Xu JZ, Spagnoli FM, Watt FM. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Reports 2022;17:1033-47. [PMID: 35487213 DOI: 10.1016/j.stemcr.2022.03.019] [Reference Citation Analysis]
56 Tello JA, Williams HE, Eppler RM, Steinhilb ML, Khanna M. Animal Models of Neurodegenerative Disease: Recent Advances in Fly Highlight Innovative Approaches to Drug Discovery. Front Mol Neurosci 2022;15:883358. [PMID: 35514431 DOI: 10.3389/fnmol.2022.883358] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Park CG, Jun I, Lee S, Ryu CS, Lee SA, Park J, Han HS, Park H, Manz A, Shin H, Kim YJ. Integration of Bioinspired Fibrous Strands with 3D Spheroids for Environmental Hazard Monitoring. Small 2022;:e2200757. [PMID: 35521748 DOI: 10.1002/smll.202200757] [Reference Citation Analysis]
58 Tremmel DM, Sackett SD, Feeney AK, Mitchell SA, Schaid MD, Polyak E, Chlebeck PJ, Gupta S, Kimple ME, Fernandez LA, Odorico JS. A human pancreatic ECM hydrogel optimized for 3-D modeling of the islet microenvironment. Sci Rep 2022;12:7188. [PMID: 35504932 DOI: 10.1038/s41598-022-11085-z] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Choi JR, Kozalak G, di Bari I, Babar Q, Niknam Z, Rasmi Y, Yong KW. In Vitro Human Cancer Models for Biomedical Applications. Cancers 2022;14:2284. [DOI: 10.3390/cancers14092284] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
60 Budhwani KI, Patel ZH, Guenter RE, Charania AA. A hitchhiker’s guide to cancer models. Trends in Biotechnology 2022. [DOI: 10.1016/j.tibtech.2022.04.003] [Reference Citation Analysis]
61 Aware CB, Patil DN, Suryawanshi SS, Mali PR, Rane MR, Gurav RG, Jadhav JP. Natural bioactive products as promising therapeutics: A review of natural product-based drug development. South African Journal of Botany 2022. [DOI: 10.1016/j.sajb.2022.05.028] [Reference Citation Analysis]
62 Balkrishna A, Gohel V, Kumari P, Manik M, Bhattacharya K, Dev R, Varshney A. Livogrit Prevents Methionine-Cystine Deficiency Induced Nonalcoholic Steatohepatitis by Modulation of Steatosis and Oxidative Stress in Human Hepatocyte-Derived Spheroid and in Primary Rat Hepatocytes. Bioengineered 2022;13:10811-26. [PMID: 35485140 DOI: 10.1080/21655979.2022.2065789] [Reference Citation Analysis]
63 Vergaro V, Baldassarre F, De Castro F, Migoni D, Dell’anna MM, Mastrorilli P, Fanizzi FP, Ciccarella G, Osella D. Low-Intensity Light-Responsive Anticancer Activity of Platinum(II) Complex Nanocolloids on 2D and 3D In Vitro Cancer Cell Model. Bioinorganic Chemistry and Applications 2022;2022:1-15. [DOI: 10.1155/2022/9571217] [Reference Citation Analysis]
64 İpek S, Üstündağ A, Can Eke B. Three-dimensional (3D) cell culture studies: a review of the field of toxicology. Drug Chem Toxicol 2022;:1-11. [PMID: 35450503 DOI: 10.1080/01480545.2022.2066114] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Wolff A, Frank M, Staehlke S, Peters K. A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture. Cells 2022;11:1313. [DOI: 10.3390/cells11081313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Dragic H, Barthelaix A, Duret C, Le Goupil S, Laprade H, Martin S, Brugière S, Couté Y, Machon C, Guitton J, Rudewicz J, Hofman P, Lebecque S, Chaveroux C, Ferraro-Peyret C, Renno T, Manié SN. The hexosamine pathway and coat complex II promote malignant adaptation to nutrient scarcity. Life Sci Alliance 2022;5:e202101334. [PMID: 35396334 DOI: 10.26508/lsa.202101334] [Reference Citation Analysis]
67 Qazi TH, Blatchley MR, Davidson MD, Yavitt FM, Cooke ME, Anseth KS, Burdick JA. Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell 2022:S1934-5909(22)00111-4. [PMID: 35413278 DOI: 10.1016/j.stem.2022.03.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Rathore RS, R Ayyannan S, Mahto SK. Emerging three-dimensional neuronal culture assays for neurotherapeutics drug discovery. Expert Opinion on Drug Discovery. [DOI: 10.1080/17460441.2022.2061458] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
69 Yuan Y, Shi C, Wu X, Li W, Huang C, Liang L, Chen J, Wang Y, Liu Y. Synthesis and anticancer activity in vitro and in vivo evaluation of iridium(III) complexes on mouse melanoma B16 cells. Journal of Inorganic Biochemistry 2022. [DOI: 10.1016/j.jinorgbio.2022.111820] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
70 Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. Adv Sci (Weinh) 2022;9:e2105319. [PMID: 35043598 DOI: 10.1002/advs.202105319] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Kim SJ, Byun H, Lee S, Kim E, Lee GM, Huh SJ, Joo J, Shin H. Spatially arranged encapsulation of stem cell spheroids within hydrogels for the regulation of spheroid fusion and cell migration. Acta Biomater 2022;142:60-72. [PMID: 35085797 DOI: 10.1016/j.actbio.2022.01.047] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
72 Brewer G, Fortier A, Park M, Moraes C. The case for cancer-associated fibroblasts: essential elements in cancer drug discovery? Future Drug Discovery. [DOI: 10.4155/fdd-2021-0004] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
73 Francés-Herrero E, Rodríguez-Eguren A, Gómez-Álvarez M, de Miguel-Gómez L, Ferrero H, Cervelló I. Future Challenges and Opportunities of Extracellular Matrix Hydrogels in Female Reproductive Medicine. Int J Mol Sci 2022;23:3765. [PMID: 35409119 DOI: 10.3390/ijms23073765] [Reference Citation Analysis]
74 Smith D, Price DRG, Faber MN, Chapuis AF, McNeilly TN. Advancing animal health and disease research in the lab with three-dimensional cell culture systems. Vet Rec 2022;:e1528. [PMID: 35338777 DOI: 10.1002/vetr.1528] [Reference Citation Analysis]
75 Christodoulou I, Goulielmaki M, Kritikos A, Zoumpourlis P, Koliakos G, Zoumpourlis V. Suitability of Human Mesenchymal Stem Cells Derived from Fetal Umbilical Cord (Wharton’s Jelly) as an Alternative In Vitro Model for Acute Drug Toxicity Screening. Cells 2022;11:1102. [DOI: 10.3390/cells11071102] [Reference Citation Analysis]
76 Costa BNL, Adão RMR, Maibohm C, Accardo A, Cardoso VF, Nieder JB. Cellular Interaction of Bone Marrow Mesenchymal Stem Cells with Polymer and Hydrogel 3D Microscaffold Templates. ACS Appl Mater Interfaces 2022;14:13013-24. [PMID: 35282678 DOI: 10.1021/acsami.1c23442] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
77 Zoio P, Oliva A. Skin-on-a-Chip Technology: Microengineering Physiologically Relevant In Vitro Skin Models. Pharmaceutics 2022;14:682. [PMID: 35336056 DOI: 10.3390/pharmaceutics14030682] [Reference Citation Analysis]
78 Tian H, Shi H, Yu J, Ge S, Ruan J. Biophysics Role and Biomimetic Culture Systems of ECM Stiffness in Cancer EMT. Global Challenges. [DOI: 10.1002/gch2.202100094] [Reference Citation Analysis]
79 Schäfer MEA, Keller F, Schumacher J, Haas H, Vascotto F, Sahin U, Hafner M, Rudolf R. 3D Melanoma Cocultures as Improved Models for Nanoparticle-Mediated Delivery of RNA to Tumors. Cells 2022;11:1026. [DOI: 10.3390/cells11061026] [Reference Citation Analysis]
80 Braccini S, Tacchini C, Chiellini F, Puppi D. Polymeric Hydrogels for In Vitro 3D Ovarian Cancer Modeling. Int J Mol Sci 2022;23:3265. [PMID: 35328686 DOI: 10.3390/ijms23063265] [Reference Citation Analysis]
81 Ruan T, Harney D, Koay YC, Loo L, Larance M, Caron L. Anabolic Factors and Myokines Improve Differentiation of Human Embryonic Stem Cell Derived Skeletal Muscle Cells. Cells 2022;11:963. [DOI: 10.3390/cells11060963] [Reference Citation Analysis]
82 Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2021;9:770143. [PMID: 35265628 DOI: 10.3389/fcell.2021.770143] [Reference Citation Analysis]
83 Komsa-Penkova R, Stavreva G, Belemezova K, Kyurkchiev S, Todinova S, Altankov G. Mesenchymal Stem-Cell Remodeling of Adsorbed Type-I Collagen-The Effect of Collagen Oxidation. Int J Mol Sci 2022;23:3058. [PMID: 35328478 DOI: 10.3390/ijms23063058] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Klein SG, Steckbauer A, Alsolami SM, Arossa S, Parry AJ, Li M, Duarte CM. Toward Best Practices for Controlling Mammalian Cell Culture Environments. Front Cell Dev Biol 2022;10:788808. [PMID: 35265608 DOI: 10.3389/fcell.2022.788808] [Reference Citation Analysis]
85 Kanabekova P, Kadyrova A, Kulsharova G. Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. Micromachines 2022;13:428. [DOI: 10.3390/mi13030428] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
86 Liu Q, Muralidharan A, Saateh A, Ding Z, Ten Dijke P, Boukany PE. A Programmable Multifunctional 3D Cancer Cell Invasion Micro Platform. Small 2022;:e2107757. [PMID: 35266306 DOI: 10.1002/smll.202107757] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Geevarghese R, Somasekharan LT, Bhatt A, Kasoju N, Nair RP. Development and evaluation of a multicomponent bioink consisting of alginate, gelatin, diethylaminoethyl cellulose and collagen peptide for 3D bioprinting of tissue construct for drug screening application. Int J Biol Macromol 2022;207:278-88. [PMID: 35257733 DOI: 10.1016/j.ijbiomac.2022.02.191] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Campioni G, Pasquale V, Busti S, Ducci G, Sacco E, Vanoni M. An Optimized Workflow for the Analysis of Metabolic Fluxes in Cancer Spheroids Using Seahorse Technology. Cells 2022;11:866. [DOI: 10.3390/cells11050866] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Samanta S, Ylä-Outinen L, Rangasami VK, Narkilahti S, Oommen OP. Bidirectional cell-matrix interaction dictates neuronal network formation in a brain-mimetic 3D scaffold. Acta Biomater 2022;140:314-23. [PMID: 34902615 DOI: 10.1016/j.actbio.2021.12.010] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Namestnikov M, Dekel B. Moving To A New Dimension: 3D Kidney Cultures For Kidney Regeneration. Current Opinion in Biomedical Engineering 2022. [DOI: 10.1016/j.cobme.2022.100379] [Reference Citation Analysis]
91 Lee BE, Lee BJ, Lee KJ, Lee M, Lim YJ, Choi JK, Keum B. A simple and efficient cryopreservation method for mouse small intestinal and colon organoids for regenerative medicine. Biochemical and Biophysical Research Communications 2022;595:14-21. [DOI: 10.1016/j.bbrc.2021.12.021] [Reference Citation Analysis]
92 Fattahi E, Taheri S, Schilling AF, Becker T, Pörtner R. Generation and evaluation of input values for computational analysis of transport processes within tissue cultures. Engineering in Life Sciences. [DOI: 10.1002/elsc.202100128] [Reference Citation Analysis]
93 Temblador A, Topalis D, van den Oord J, Andrei G, Snoeck R. Organotypic Epithelial Raft Cultures as a Three-Dimensional In Vitro Model of Merkel Cell Carcinoma. Cancers (Basel) 2022;14:1091. [PMID: 35205840 DOI: 10.3390/cancers14041091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Ji X, Zheng M, Fan T, Xu B. Commentary: Novel Cell Culture Paradigm Prolongs Mouse Corneal Epithelial Cell Proliferative Activity In Vitro and In Vivo. Front Cell Dev Biol 2022;10:822728. [DOI: 10.3389/fcell.2022.822728] [Reference Citation Analysis]
95 Özkan H, Öztürk DG, Korkmaz G. Transcriptional Factor Repertoire of Breast Cancer in 3D Cell Culture Models. Cancers 2022;14:1023. [DOI: 10.3390/cancers14041023] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Tregnago C, Benetton M, Da Ros A, Borella G, Longo G, Polato K, Francescato S, Biffi A, Pigazzi M. Novel Compounds Synergize With Venetoclax to Target KMT2A-Rearranged Pediatric Acute Myeloid Leukemia. Front Pharmacol 2021;12:820191. [PMID: 35153769 DOI: 10.3389/fphar.2021.820191] [Reference Citation Analysis]
97 Sasikumar S, Chameettachal S, Kingshott P, Cromer B, Pati F. Influence of Liver Extracellular Matrix in Predicting Drug-Induced Liver Injury: An Alternate Paradigm. ACS Biomater Sci Eng 2022;8:834-46. [PMID: 34978414 DOI: 10.1021/acsbiomaterials.1c00994] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
98 Asuzu PC, Trompeter NS, Cooper CR, Besong SA, Aryee ANA. Cell Culture-Based Assessment of Toxicity and Therapeutics of Phytochemical Antioxidants. Molecules 2022;27:1087. [DOI: 10.3390/molecules27031087] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Kazimierczak P, Przekora A. Bioengineered Living Bone Grafts-A Concise Review on Bioreactors and Production Techniques In Vitro. Int J Mol Sci 2022;23:1765. [PMID: 35163687 DOI: 10.3390/ijms23031765] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
100 Yuan X, Nonsuwan P, Shobo M, Rajan R, Yamazaki T, Sakakibara K, Matsumura K, Yoshikawa C. Cellular Flocculation Using Concentrated Polymer Brush-Modified Cellulose Nanofibers with Different Fiber Lengths. Biomacromolecules 2022. [PMID: 35104113 DOI: 10.1021/acs.biomac.1c01424] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Wu NC, Cadavid JL, Tan X, Latour S, Scaini S, Makhijani P, Mcgaha TL, Ailles L, Mcguigan AP. 3D microgels to quantify tumor cell properties and therapy response dynamics. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121417] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
102 Engel M, Belfiore L, Aghaei B, Sutija M. Enabling high throughput drug discovery in 3D cell cultures through a novel bioprinting workflow. SLAS Technol 2022;27:32-8. [PMID: 35058203 DOI: 10.1016/j.slast.2021.10.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
103 Philips C, Terrie L, Thorrez L. Decellularized skeletal muscle: A versatile biomaterial in tissue engineering and regenerative medicine. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121436] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
104 Maura R, Francesco A, Simona R, Elena S, Claudio A. Three-dimensional models: a novel approach for lymphoma research. J Cancer Res Clin Oncol. [DOI: 10.1007/s00432-021-03897-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
105 Valverde MG, Mille LS, Figler KP, Cervantes E, Li VY, Bonventre JV, Masereeuw R, Zhang YS. Biomimetic models of the glomerulus. Nat Rev Nephrol 2022. [PMID: 35064233 DOI: 10.1038/s41581-021-00528-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
106 Rabie AMI, Ali ASM, Al-Zeer MA, Barhoum A, El-Hallouty S, Shousha WG, Berg J, Kurreck J, Khalil ASG. Spontaneous Formation of 3D Breast Cancer Tissues on Electrospun Chitosan/Poly(ethylene oxide) Nanofibrous Scaffolds. ACS Omega 2022;7:2114-26. [PMID: 35071900 DOI: 10.1021/acsomega.1c05646] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
107 Marques-Magalhães Â, Cruz T, Costa ÂM, Estêvão D, Rios E, Canão PA, Velho S, Carneiro F, Oliveira MJ, Cardoso AP. Decellularized Colorectal Cancer Matrices as Bioactive Scaffolds for Studying Tumor-Stroma Interactions. Cancers (Basel) 2022;14:359. [PMID: 35053521 DOI: 10.3390/cancers14020359] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
108 Ali R, Huwaizi S, Alhallaj A, Al Subait A, Barhoumi T, Al Zahrani H, Al Anazi A, Latif Khan A, Boudjelal M. New Born Calf Serum Can Induce Spheroid Formation in Breast Cancer KAIMRC1 Cell Line. Front Mol Biosci 2021;8:769030. [PMID: 35004846 DOI: 10.3389/fmolb.2021.769030] [Reference Citation Analysis]
109 Chaudhary S, Chakraborty E. Hydrogel based tissue engineering and its future applications in personalized disease modeling and regenerative therapy. Beni Suef Univ J Basic Appl Sci 2022;11:3. [PMID: 35005036 DOI: 10.1186/s43088-021-00172-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
110 Imparato G, Urciuolo F, Netti PA. Organ on Chip Technology to Model Cancer Growth and Metastasis. Bioengineering (Basel) 2022;9:28. [PMID: 35049737 DOI: 10.3390/bioengineering9010028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
111 Kim J, Lee Y, Ahn Y, Kim M, Lee G. In Situ Detection of Hydrogen Sulfide in 3D-Cultured, Live Prostate Cancer Cells Using a Paper-Integrated Analytical Device. Chemosensors 2022;10:27. [DOI: 10.3390/chemosensors10010027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
112 Spiller ER, Ung N, Kim S, Patsch K, Lau R, Strelez C, Doshi C, Choung S, Choi B, Juarez Rosales EF, Lenz HJ, Matasci N, Mumenthaler SM. Imaging-Based Machine Learning Analysis of Patient-Derived Tumor Organoid Drug Response. Front Oncol 2021;11:771173. [PMID: 34993134 DOI: 10.3389/fonc.2021.771173] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
113 Martens A, de Buhr N, Ishikawa H, Schroten H, von Köckritz-Blickwede M. Characterization of Oxygen Levels in an Uninfected and Infected Human Blood-Cerebrospinal-Fluid-Barrier Model. Cells 2022;11:151. [PMID: 35011713 DOI: 10.3390/cells11010151] [Reference Citation Analysis]
114 Garza Ramos A, Daim T, Gaats L, Hutmacher DW, Hackenberger D. Technology roadmap for the development of a 3D cell culture workstation for a biomedical industry startup. Technological Forecasting and Social Change 2022;174:121213. [DOI: 10.1016/j.techfore.2021.121213] [Reference Citation Analysis]
115 Li Y, Chan JWY, Lau RWH, Cheung WWY, Wong AM, Wong AM, Wong N, Ng CSH. Organoids in Lung Cancer Management. Front Surg 2021;8:753801. [PMID: 34957199 DOI: 10.3389/fsurg.2021.753801] [Reference Citation Analysis]
116 Harb A, Fakhreddine M, Zaraket H, Saleh FA. Three-Dimensional Cell Culture Models to Study Respiratory Virus Infections Including COVID-19. Biomimetics (Basel) 2021;7:3. [PMID: 35076456 DOI: 10.3390/biomimetics7010003] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
117 Wang L, Wang X, Wang T, Zhuang Y, Wang G. Multi-omics analysis defines 5-fluorouracil drug resistance in 3D HeLa carcinoma cell model. Bioresour Bioprocess 2021;8. [DOI: 10.1186/s40643-021-00486-z] [Reference Citation Analysis]
118 Dogan E, Kisim A, Bati-Ayaz G, Kubicek GJ, Pesen-Okvur D, Miri AK. Cancer Stem Cells in Tumor Modeling: Challenges and Future Directions. Adv Nanobiomed Res 2021;1:2100017. [PMID: 34927168 DOI: 10.1002/anbr.202100017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
119 Pang JKS, Ho BX, Chan WK, Soh BS. Insights to Heart Development and Cardiac Disease Models Using Pluripotent Stem Cell Derived 3D Organoids. Front Cell Dev Biol 2021;9:788955. [PMID: 34926467 DOI: 10.3389/fcell.2021.788955] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
120 Yu P, Duan Z, Liu S, Pachon I, Ma J, Hemstreet GP, Zhang Y. Drug-Induced Nephrotoxicity Assessment in 3D Cellular Models. Micromachines (Basel) 2021;13:3. [PMID: 35056167 DOI: 10.3390/mi13010003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
121 Ławkowska K, Pokrywczyńska M, Koper K, Kluth LA, Drewa T, Adamowicz J. Application of Graphene in Tissue Engineering of the Nervous System. Int J Mol Sci 2021;23:33. [PMID: 35008456 DOI: 10.3390/ijms23010033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
122 Lee SJ, Kim HA, Kim SJ, Lee HA. Improving Generation of Cardiac Organoids from Human Pluripotent Stem Cells Using the Aurora Kinase Inhibitor ZM447439. Biomedicines 2021;9:1952. [PMID: 34944767 DOI: 10.3390/biomedicines9121952] [Reference Citation Analysis]
123 Law AMK, Rodriguez de la Fuente L, Grundy TJ, Fang G, Valdes-Mora F, Gallego-Ortega D. Advancements in 3D Cell Culture Systems for Personalizing Anti-Cancer Therapies. Front Oncol 2021;11:782766. [PMID: 34917509 DOI: 10.3389/fonc.2021.782766] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
124 Muthu S, Kartheek RR, Jeyaraman N, Rajendran RL, Khanna M, Jeyaraman M, Packkyarathinam RP, Gangadaran P, Ahn BC. Is Culture Expansion Necessary in Autologous Mesenchymal Stromal Cell Therapy to Obtain Superior Results in the Management of Knee Osteoarthritis?-Meta-Analysis of Randomized Controlled Trials. Bioengineering (Basel) 2021;8:220. [PMID: 34940373 DOI: 10.3390/bioengineering8120220] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
125 Li Y, Qin Z, Zhang F, Yang ST. Two-color fluorescent proteins reporting survivin regulation in breast cancer cells for high throughput drug screening. Biotechnol Bioeng 2021. [PMID: 34914099 DOI: 10.1002/bit.28006] [Reference Citation Analysis]
126 Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021;6:426. [PMID: 34916490 DOI: 10.1038/s41392-021-00830-x] [Cited by in F6Publishing: 23] [Reference Citation Analysis]
127 Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
128 Hu M, Lei XY, Larson JD, McAlonis M, Ford K, McDonald D, Mach K, Rusert JM, Wechsler-Reya RJ, Mali P. Integrated genome and tissue engineering enables screening of cancer vulnerabilities in physiologically relevant perfusable ex vivo cultures. Biomaterials 2022;280:121276. [PMID: 34890975 DOI: 10.1016/j.biomaterials.2021.121276] [Reference Citation Analysis]
129 Polat S, Trif M, Rusu A, Šimat V, Čagalj M, Alak G, Meral R, Özogul Y, Polat A, Özogul F. Recent advances in industrial applications of seaweeds. Crit Rev Food Sci Nutr 2021;:1-30. [PMID: 34875930 DOI: 10.1080/10408398.2021.2010646] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
130 Beller NC, Lukowski JK, Ludwig KR, Hummon AB. Spatial Stable Isotopic Labeling by Amino Acids in Cell Culture: Pulse-Chase Labeling of Three-Dimensional Multicellular Spheroids for Global Proteome Analysis. Anal Chem 2021;93:15990-9. [PMID: 34813286 DOI: 10.1021/acs.analchem.1c03461] [Reference Citation Analysis]
131 Brumskill S, Barrera LN, Calcraft P, Phillips C, Costello E. Inclusion of cancer-associated fibroblasts in drug screening assays to evaluate pancreatic cancer resistance to therapeutic drugs. J Physiol Biochem 2021. [PMID: 34865180 DOI: 10.1007/s13105-021-00857-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
132 Kim J, Lee H, Jin EJ, Jo Y, Kang BE, Ryu D, Kim G. A Microfluidic Device to Fabricate One-Step Cell Bead-Laden Hydrogel Struts for Tissue Engineering. Small 2022;18:e2106487. [PMID: 34854561 DOI: 10.1002/smll.202106487] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
133 Samimi H, Sohi AN, Irani S, Arefian E, Mahdiannasser M, Fallah P, Haghpanah V. Alginate-based 3D cell culture technique to evaluate the half-maximal inhibitory concentration: an in vitro model of anticancer drug study for anaplastic thyroid carcinoma. Thyroid Res 2021;14:27. [PMID: 34861882 DOI: 10.1186/s13044-021-00118-w] [Reference Citation Analysis]
134 Tuffin J, Chesor M, Kuzmuk V, Johnson T, Satchell SC, Welsh GI, Saleem MA. GlomSpheres as a 3D co-culture spheroid model of the kidney glomerulus for rapid drug-screening. Commun Biol 2021;4:1351. [PMID: 34857869 DOI: 10.1038/s42003-021-02868-7] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
135 Notarstefano V, Sabbatini S, Sabbatini M, Arrais A, Belloni A, Pro C, Vaccari L, Osella D, Giorgini E. Hyperspectral characterization of the MSTO-211H cell spheroid model: A FPA–FTIR imaging approach. Clinical Spectroscopy 2021;3:100011. [DOI: 10.1016/j.clispe.2021.100011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
136 Martinez-Pacheco S, O'Driscoll L. Pre-Clinical In Vitro Models Used in Cancer Research: Results of a Worldwide Survey. Cancers (Basel) 2021;13:6033. [PMID: 34885142 DOI: 10.3390/cancers13236033] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
137 Ji K, Zhao Z, Sameni M, Moin K, Xu Y, Gillies RJ, Sloane BF, Mattingly RR. Modeling Tumor: Lymphatic Interactions in Lymphatic Metastasis of Triple Negative Breast Cancer. Cancers (Basel) 2021;13:6044. [PMID: 34885152 DOI: 10.3390/cancers13236044] [Reference Citation Analysis]
138 Dudman J, Ferreira AM, Gentile P, Wang X, Dalgarno K. Microvalve Bioprinting of MSC-Chondrocyte Co-Cultures. Cells 2021;10:3329. [PMID: 34943837 DOI: 10.3390/cells10123329] [Reference Citation Analysis]
139 Tajeddin A, Mustafaoglu N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. Micromachines (Basel) 2021;12:1443. [PMID: 34945293 DOI: 10.3390/mi12121443] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
140 Wu Y, Zhou Y, Qin X, Liu Y. From cell spheroids to vascularized cancer organoids: Microfluidic tumor-on-a-chip models for preclinical drug evaluations. Biomicrofluidics 2021;15:061503. [PMID: 34804315 DOI: 10.1063/5.0062697] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
141 Schofield CA, Walker TM, Taylor MA, Patel M, Vlachou DF, Macina JM, Vidgeon-Hart MP, Williams A, McGill PJ, Newman CF, Sakatis MZ. Evaluation of a Three-Dimensional Primary Human Hepatocyte Spheroid Model: Adoption and Industrialization for the Enhanced Detection of Drug-Induced Liver Injury. Chem Res Toxicol 2021. [PMID: 34797640 DOI: 10.1021/acs.chemrestox.1c00227] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
142 Marconi GD, Porcheri C, Trubiani O, Mitsiadis TA. Three-Dimensional Culture Systems for Dissecting Notch Signalling in Health and Disease. Int J Mol Sci 2021;22:12473. [PMID: 34830355 DOI: 10.3390/ijms222212473] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
143 Saggioro M, D'Agostino S, Gallo A, Crotti S, D'Aronco S, Corallo D, Veltri G, Martinez G, Grigoletto A, Tolomeo AM, Tafuro G, Agostini M, Aveic S, Serafin V, Semenzato A, Pasut G, Pozzobon M. A rhabdomyosarcoma hydrogel model to unveil cell-extracellular matrix interactions. Biomater Sci 2021. [PMID: 34796888 DOI: 10.1039/d1bm00929j] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Vit FF, Nunes R, Wu YT, Prado Soares MC, Godoi N, Fujiwara E, Carvalho HF, Gaziola de la Torre L. A modular, reversible sealing, and reusable microfluidic device for drug screening. Anal Chim Acta 2021;1185:339068. [PMID: 34711311 DOI: 10.1016/j.aca.2021.339068] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
145 Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. Int J Mol Sci 2021;22:12200. [PMID: 34830082 DOI: 10.3390/ijms222212200] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
146 Atat OE, Farzaneh Z, Pourhamzeh M, Taki F, Abi-Habib R, Vosough M, El-Sibai M. 3D modeling in cancer studies. Hum Cell 2021. [PMID: 34761350 DOI: 10.1007/s13577-021-00642-9] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
147 Kort-Mascort J, Bao G, Elkashty O, Flores-Torres S, Munguia-Lopez JG, Jiang T, Ehrlicher AJ, Mongeau L, Tran SD, Kinsella JM. Decellularized Extracellular Matrix Composite Hydrogel Bioinks for the Development of 3D Bioprinted Head and Neck in Vitro Tumor Models. ACS Biomater Sci Eng 2021;7:5288-300. [PMID: 34661396 DOI: 10.1021/acsbiomaterials.1c00812] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
148 Sükei T, Palma E, Urbani L. Interplay between Cellular and Non-Cellular Components of the Tumour Microenvironment in Hepatocellular Carcinoma. Cancers (Basel) 2021;13:5586. [PMID: 34771746 DOI: 10.3390/cancers13215586] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
149 Orlando LMR, Lechuga GC, da Silva Lara L, Ferreira BS, Pereira CN, Silva RC, Dos Santos MS, Pereira MCS. Structural Optimization and Biological Activity of Pyrazole Derivatives: Virtual Computational Analysis, Recovery Assay and 3D Culture Model as Potential Predictive Tools of Effectiveness against Trypanosoma cruzi. Molecules 2021;26:6742. [PMID: 34771151 DOI: 10.3390/molecules26216742] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
150 Master A, Huang W, Huang L, Li W, Saglam S, Honkanen R, Rigas B. Simplified ex-vivo drug evaluation in ocular surface cells: Culture on cellulose filters of cells obtained by impression cytology. Exp Eye Res 2021;213:108827. [PMID: 34742691 DOI: 10.1016/j.exer.2021.108827] [Reference Citation Analysis]
151 Calvaruso M, Militello C, Minafra L, La Regina V, Torrisi F, Pucci G, Cammarata FP, Bravatà V, Forte GI, Russo G. Biological and Mechanical Characterization of the Random Positioning Machine (RPM) for Microgravity Simulations. Life (Basel) 2021;11:1190. [PMID: 34833068 DOI: 10.3390/life11111190] [Reference Citation Analysis]
152 Cavaco M, Fraga P, Valle J, Andreu D, Castanho MARB, Neves V. Development of Breast Cancer Spheroids to Evaluate Cytotoxic Response to an Anticancer Peptide. Pharmaceutics 2021;13:1863. [PMID: 34834277 DOI: 10.3390/pharmaceutics13111863] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
153 Kniebs C, Luengen AE, Guenther D, Cornelissen CG, Schmitz-Rode T, Jockenhoevel S, Thiebes AL. Establishment of a Pre-vascularized 3D Lung Cancer Model in Fibrin Gel-Influence of Hypoxia and Cancer-Specific Therapeutics. Front Bioeng Biotechnol 2021;9:761846. [PMID: 34722481 DOI: 10.3389/fbioe.2021.761846] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
154 Fang G, Lu H, Rodriguez de la Fuente L, Law AMK, Lin G, Jin D, Gallego-Ortega D. Mammary Tumor Organoid Culture in Non-Adhesive Alginate for Luminal Mechanics and High-Throughput Drug Screening. Adv Sci (Weinh) 2021;8:e2102418. [PMID: 34494727 DOI: 10.1002/advs.202102418] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
155 Shen J, Hao J, Chen Y, Liu H, Wu J, Hu B, Wang Y, Zheng Y, Cai X. Neutrophil-mediated clinical nanodrug for treatment of residual tumor after focused ultrasound ablation. J Nanobiotechnology 2021;19:345. [PMID: 34715854 DOI: 10.1186/s12951-021-01087-w] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
156 Wu J, Liyarita BR, Zhu H, Liu M, Hu X, Shao F. Self-Assembly of Dendritic DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS Appl Mater Interfaces 2021;13:49705-12. [PMID: 34658242 DOI: 10.1021/acsami.1c14445] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
157 Kim H, Roh H, Kim H, Park JK. Droplet contact-based spheroid transfer technique as a multi-step assay tool for spheroid arrays. Lab Chip 2021;21:4155-65. [PMID: 34515264 DOI: 10.1039/d1lc00581b] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
158 Mitola G, Falvo P, Bertolini F. New Insight to Overcome Tumor Resistance: An Overview from Cellular to Clinical Therapies. Life (Basel) 2021;11:1131. [PMID: 34833007 DOI: 10.3390/life11111131] [Reference Citation Analysis]
159 Goudar VS, Koduri MP, Ta YN, Chen Y, Chu LA, Lu LS, Tseng FG. Impact of a Desmoplastic Tumor Microenvironment for Colon Cancer Drug Sensitivity: A Study with 3D Chimeric Tumor Spheroids. ACS Appl Mater Interfaces 2021;13:48478-91. [PMID: 34633791 DOI: 10.1021/acsami.1c18249] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
160 Tinajero-Díaz E, Salado-Leza D, Gonzalez C, Martínez Velázquez M, López Z, Bravo-Madrigal J, Knauth P, Flores-Hernández FY, Herrera-Rodríguez SE, Navarro RE, Cabrera-Wrooman A, Krötzsch E, Carvajal ZYG, Hernández-Gutiérrez R. Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications. Pharmaceutics 2021;13:1719. [PMID: 34684012 DOI: 10.3390/pharmaceutics13101719] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
161 Elberskirch L, Le Harzic R, Scheglmann D, Wieland G, Wiehe A, Mathieu-Gaedke M, Golf HRA, von Briesen H, Wagner S. A HET-CAM based vascularized intestine tumor model as a screening platform for nano-formulated photosensitizers. Eur J Pharm Sci 2021;168:106046. [PMID: 34670122 DOI: 10.1016/j.ejps.2021.106046] [Reference Citation Analysis]
162 Zingales V, Torriero N, Zanella L, Fernández-Franzón M, Ruiz MJ, Esposito MR, Cimetta E. Development of an in vitro neuroblastoma 3D model and its application for sterigmatocystin-induced cytotoxicity testing. Food Chem Toxicol 2021;157:112605. [PMID: 34634377 DOI: 10.1016/j.fct.2021.112605] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
163 Zhang Y, Huang J, Fu D, Liu Z, Wang H, Wang J, Qu Q, Li K, Fan Z, Hu Z, Miao Y. Transcriptome Analysis Reveals an Inhibitory Effect of Dihydrotestosterone-Treated 2D- and 3D-Cultured Dermal Papilla Cells on Hair Follicle Growth. Front Cell Dev Biol 2021;9:724310. [PMID: 34604224 DOI: 10.3389/fcell.2021.724310] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
164 Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021;177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
165 Bastos AR, Raquel Maia F, Miguel Oliveira J, Reis RL, Correlo VM. Influence of gellan gum-hydroxyapatite spongy-like hydrogels on human osteoblasts under long-term osteogenic differentiation conditions. Mater Sci Eng C Mater Biol Appl 2021;129:112413. [PMID: 34579922 DOI: 10.1016/j.msec.2021.112413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
166 Kaczmarczyk JA, Roberts RR, Luke BT, Chan KC, Van Wagoner CM, Felder RA, Saul RG, Simona C, Blonder J. Comparative microsomal proteomics of a model lung cancer cell line NCI-H23 reveals distinct differences between molecular profiles of 3D and 2D cultured cells. Oncotarget 2021;12:2022-38. [PMID: 34611477 DOI: 10.18632/oncotarget.28072] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
167 Liu R, Sun F, Armand LC, Wu R, Xu C. Chronic Ethanol Exposure Induces Deleterious Changes in Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2021;17:2314-31. [PMID: 34564802 DOI: 10.1007/s12015-021-10267-y] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
168 Bennie LA, Feng J, Emmerson C, Hyland WB, Matchett KB, McCarthy HO, Coulter JA. Formulating RALA/Au nanocomplexes to enhance nanoparticle internalisation efficiency, sensitising prostate tumour models to radiation treatment. J Nanobiotechnology 2021;19:279. [PMID: 34538237 DOI: 10.1186/s12951-021-01019-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
169 Hirota A, AlMusawi S, Nateri AS, Ordóñez-Morán P, Imajo M. Biomaterials for intestinal organoid technology and personalized disease modeling. Acta Biomater 2021;132:272-87. [PMID: 34023456 DOI: 10.1016/j.actbio.2021.05.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
170 Vinje JB, Guadagno NA, Progida C, Sikorski P. Analysis of Actin and Focal Adhesion Organisation in U2OS Cells on Polymer Nanostructures. Nanoscale Res Lett 2021;16:143. [PMID: 34524556 DOI: 10.1186/s11671-021-03598-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
171 Hill L, Bruns J, Zustiak SP. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids. Acta Biomater 2021;132:437-47. [PMID: 34010694 DOI: 10.1016/j.actbio.2021.05.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
172 Costard LS, Hosn RR, Ramanayake H, O'Brien FJ, Curtin CM. Influences of the 3D microenvironment on cancer cell behaviour and treatment responsiveness: A recent update on lung, breast and prostate cancer models. Acta Biomater 2021;132:360-78. [PMID: 33484910 DOI: 10.1016/j.actbio.2021.01.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
173 Chatterjee C, Schertl P, Frommer M, Ludwig-Husemann A, Mohra A, Dilger N, Naolou T, Meermeyer S, Bergmann TC, Alonso Calleja A, Lee-Thedieck C. Rebuilding the hematopoietic stem cell niche: Recent developments and future prospects. Acta Biomater 2021;132:129-48. [PMID: 33813090 DOI: 10.1016/j.actbio.2021.03.061] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
174 Franchi-Mendes T, Eduardo R, Domenici G, Brito C. 3D Cancer Models: Depicting Cellular Crosstalk within the Tumour Microenvironment. Cancers (Basel) 2021;13:4610. [PMID: 34572836 DOI: 10.3390/cancers13184610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
175 De S, Joshi A, Tripathi DM, Kaur S, Singh N. Alginate based 3D micro-scaffolds mimicking tumor architecture as in vitro cell culture platform. Mater Sci Eng C Mater Biol Appl 2021;128:112344. [PMID: 34474894 DOI: 10.1016/j.msec.2021.112344] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
176 Herrada-Manchón H, Celada L, Rodríguez-González D, Alejandro Fernández M, Aguilar E, Chiara MD. Three-dimensional bioprinted cancer models: A powerful platform for investigating tunneling nanotube-like cell structures in complex microenvironments. Mater Sci Eng C Mater Biol Appl 2021;128:112357. [PMID: 34474904 DOI: 10.1016/j.msec.2021.112357] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
177 Louis F, Sowa Y, Kitano S, Matsusaki M. High-throughput drug screening models of mature adipose tissues which replicate the physiology of patients' Body Mass Index (BMI). Bioact Mater 2022;7:227-41. [PMID: 34466729 DOI: 10.1016/j.bioactmat.2021.05.020] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
178 Yaqub N, Wayne G, Birchall M, Song W. Recent advances in human respiratory epithelium models for drug discovery. Biotechnol Adv 2021;:107832. [PMID: 34481894 DOI: 10.1016/j.biotechadv.2021.107832] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
179 Kong JS, Huang X, Choi YJ, Yi HG, Kang J, Kim S, Kim J, Lee H, Rim YA, Ju JH, Chung WK, Woolf CJ, Jang J, Cho DW. Promoting Long-Term Cultivation of Motor Neurons for 3D Neuromuscular Junction Formation of 3D In Vitro Using Central-Nervous-Tissue-Derived Bioink. Adv Healthc Mater 2021;10:e2100581. [PMID: 34363335 DOI: 10.1002/adhm.202100581] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
180 Croft PK, Sharma S, Godbole N, Rice GE, Salomon C. Ovarian-Cancer-Associated Extracellular Vesicles: Microenvironmental Regulation and Potential Clinical Applications. Cells 2021;10:2272. [PMID: 34571921 DOI: 10.3390/cells10092272] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
181 Suderman MT, Temeyer KB, Schlechte KG, Pérez de León AA. Three-Dimensional Culture of Rhipicephalus (Boophilus) microplus BmVIII-SCC Cells on Multiple Synthetic Scaffold Systems and in Rotating Bioreactors. Insects 2021;12:747. [PMID: 34442313 DOI: 10.3390/insects12080747] [Reference Citation Analysis]
182 Lin HH, Robertson KL, Bisbee HA, Farkas ME. Oncogenic and Circadian Effects of Small Molecules Directly and Indirectly Targeting the Core Circadian Clock. Integr Cancer Ther 2020;19:1534735420924094. [PMID: 32493076 DOI: 10.1177/1534735420924094] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
183 Rodriguez-Granrose D, Zurawski J, Heaton W, Tandeski T, Dulatov G, Highsmith AA, Conen M, Clark G, Jones A, Loftus H, LeBaron C, Scull E, Farhang N, Erickson I, Bingham J, Decaria P, Jones N, Foley KT, Silverman L. Transition from static culture to stirred tank bioreactor for the allogeneic production of therapeutic discogenic cell spheres. Stem Cell Res Ther 2021;12:455. [PMID: 34384480 DOI: 10.1186/s13287-021-02525-0] [Reference Citation Analysis]
184 Morello G, Polini A, Scalera F, Rizzo R, Gigli G, Gervaso F. Preparation and Characterization of Salt-Mediated Injectable Thermosensitive Chitosan/Pectin Hydrogels for Cell Embedding and Culturing. Polymers (Basel) 2021;13:2674. [PMID: 34451215 DOI: 10.3390/polym13162674] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
185 Syama K, Hassan EM, Zou S. Advances in culture methods for acute myeloid leukemia research. Oncoscience 2021;8:82-90. [PMID: 34368398 DOI: 10.18632/oncoscience.540] [Reference Citation Analysis]
186 Henckes NAC, Faleiro D, Chuang LC, Cirne-Lima EO. Scaffold strategies combined with mesenchymal stem cells in vaginal construction: a review. Cell Regen 2021;10:26. [PMID: 34337675 DOI: 10.1186/s13619-021-00088-2] [Reference Citation Analysis]
187 Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021;175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
188 Too NSH, Ho NCW, Adine C, Iyer NG, Fong ELS. Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Adv Drug Deliv Rev 2021;175:113791. [PMID: 33965462 DOI: 10.1016/j.addr.2021.05.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
189 Baru A, Sharma S, Purakayastha BPD, Khan S, Mazumdar S, Gupta R, Kundu PK, Arora NM. AXTEX-4D: A Three-Dimensional Ex Vivo Platform for Preclinical Investigations of Immunotherapy Agents. Assay Drug Dev Technol 2021. [PMID: 34319797 DOI: 10.1089/adt.2021.031] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
190 Yaqinuddin A, Ikram MF, Ambia AR, Alaujan R, Kashir J. 3D Models as an Adjunct for Models in Studying Alzheimer’s Disease. Journal of Health and Allied Sciences NU. [DOI: 10.1055/s-0041-1731864] [Reference Citation Analysis]
191 Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021;13:3651. [PMID: 34359553 DOI: 10.3390/cancers13153651] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
192 de Oliveira M, De Sibio MT, Costa FAS, Sakalem ME. Airway and Alveoli Organoids as Valuable Research Tools in COVID-19. ACS Biomater Sci Eng 2021;7:3487-502. [PMID: 34288642 DOI: 10.1021/acsbiomaterials.1c00306] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
193 Jerman UD, Veranič P, Cirman T, Kreft ME. Human Amniotic Membrane Enriched with Urinary Bladder Fibroblasts Promote the Re-Epithelization of Urothelial Injury. Cell Transplant 2020;29:963689720946668. [PMID: 32841052 DOI: 10.1177/0963689720946668] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
194 Jung O, Song MJ, Ferrer M. Operationalizing the Use of Biofabricated Tissue Models as Preclinical Screening Platforms for Drug Discovery and Development. SLAS Discov 2021;:24725552211030903. [PMID: 34269079 DOI: 10.1177/24725552211030903] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
195 Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021;121:7468-529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Cited by in Crossref: 5] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
196 Premeaux TA, Mediouni S, Leda A, Furler RL, Valente ST, Fine HA, Nixon DF, Ndhlovu LC. Next-Generation Human Cerebral Organoids as Powerful Tools To Advance NeuroHIV Research. mBio 2021;12:e0068021. [PMID: 34253056 DOI: 10.1128/mBio.00680-21] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
197 Rosendahl J, Svanström A, Berglin M, Petronis S, Bogestål Y, Stenlund P, Standoft S, Ståhlberg A, Landberg G, Chinga-Carrasco G, Håkansson J. 3D Printed Nanocellulose Scaffolds as a Cancer Cell Culture Model System. Bioengineering (Basel) 2021;8:97. [PMID: 34356204 DOI: 10.3390/bioengineering8070097] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
198 Zuniga K, Gadde M, Scheftel J, Senecal K, Cressman E, Van Dyke M, Rylander MN. Collagen/kerateine multi-protein hydrogels as a thermally stable extracellular matrix for 3D in vitro models. Int J Hyperthermia 2021;38:830-45. [PMID: 34058945 DOI: 10.1080/02656736.2021.1930202] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
199 Swaminathan V, Bechtel G, Tchantchaleishvili V. Artificial tissue creation under microgravity conditions: Considerations and future applications. Artif Organs 2021. [PMID: 34223657 DOI: 10.1111/aor.14017] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
200 McCann C, Kerr EM. Metabolic Reprogramming: A Friend or Foe to Cancer Therapy? Cancers (Basel) 2021;13:3351. [PMID: 34283054 DOI: 10.3390/cancers13133351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
201 Ochiai J, Niihara Y, Oliva J. Measurement of the Adipose Stem Cells Cell Sheets Transmittance. Bioengineering (Basel) 2021;8:93. [PMID: 34356200 DOI: 10.3390/bioengineering8070093] [Reference Citation Analysis]
202 Villasante A, Godier-Furnemont A, Hernandez-Barranco A, Coq JL, Boskovic J, Peinado H, Mora J, Samitier J, Vunjak-Novakovic G. Horizontal transfer of the stemness-related markers EZH2 and GLI1 by neuroblastoma-derived extracellular vesicles in stromal cells. Transl Res 2021:S1931-5244(21)00146-8. [PMID: 34217898 DOI: 10.1016/j.trsl.2021.06.006] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
203 Farhat J, Pandey I, AlWahsh M. Transcending toward Advanced 3D-Cell Culture Modalities: A Review about an Emerging Paradigm in Translational Oncology. Cells 2021;10:1657. [PMID: 34359827 DOI: 10.3390/cells10071657] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
204 Maryam A, Chin YR. ANLN Enhances Triple-Negative Breast Cancer Stemness Through TWIST1 and BMP2 and Promotes its Spheroid Growth. Front Mol Biosci 2021;8:700973. [PMID: 34277708 DOI: 10.3389/fmolb.2021.700973] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
205 Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, Hoque Apu E, Nguyen KL, Ahsan T, Pountos I, Caterson E. Highlights on Advancing Frontiers in Tissue Engineering. Tissue Eng Part B Rev 2021. [PMID: 34210148 DOI: 10.1089/ten.TEB.2021.0012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
206 Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021;9:639699. [PMID: 34262897 DOI: 10.3389/fcell.2021.639699] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
207 Bennet TJ, Randhawa A, Hua J, Cheung KC. Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease. Cells 2021;10:1602. [PMID: 34206722 DOI: 10.3390/cells10071602] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
208 Lin ZT, Gu J, Wang H, Wu A, Sun J, Chen S, Li Y, Kong Y, Wu MX, Wu T. Thermosensitive and Conductive Hybrid Polymer for Real-Time Monitoring of Spheroid Growth and Drug Responses. ACS Sens 2021;6:2147-57. [PMID: 34014658 DOI: 10.1021/acssensors.0c02266] [Reference Citation Analysis]
209 Svanström A, Rosendahl J, Salerno S, Leiva MC, Gregersson P, Berglin M, Bogestål Y, Lausmaa J, Oko A, Chinga-Carrasco G, Petronis S, Standoft S, Ståhlberg A, Håkansson J, Landberg G. Optimized alginate-based 3D printed scaffolds as a model of patient derived breast cancer microenvironments in drug discovery. Biomed Mater 2021;16. [PMID: 34030145 DOI: 10.1088/1748-605X/ac0451] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
210 Utama RH, Tan VTG, Tjandra KC, Sexton A, Nguyen DHT, O'Mahony AP, Du EY, Tian P, Ribeiro JCC, Kavallaris M, Gooding JJ. A Covalently Crosslinked Ink for Multimaterials Drop-on-Demand 3D Bioprinting of 3D Cell Cultures. Macromol Biosci 2021;:e2100125. [PMID: 34173320 DOI: 10.1002/mabi.202100125] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
211 Gustafsson A, Garre E, Leiva MC, Salerno S, Ståhlberg A, Landberg G. Patient-derived scaffolds as a drug-testing platform for endocrine therapies in breast cancer. Sci Rep 2021;11:13334. [PMID: 34172801 DOI: 10.1038/s41598-021-92724-9] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
212 Al-Hity G, Yang F, Campillo-Funollet E, Greenstein AE, Hunt H, Mampay M, Intabli H, Falcinelli M, Madzvamuse A, Venkataraman C, Flint MS. An integrated framework for quantifying immune-tumour interactions in a 3D co-culture model. Commun Biol 2021;4:781. [PMID: 34168276 DOI: 10.1038/s42003-021-02296-7] [Reference Citation Analysis]
213 Moccia C, Haase K. Engineering Breast Cancer On-chip-Moving Toward Subtype Specific Models. Front Bioeng Biotechnol 2021;9:694218. [PMID: 34249889 DOI: 10.3389/fbioe.2021.694218] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
214 Song J, Ju Y, Amarasena TH, Lin Z, Mettu S, Zhou J, Rahim MA, Ang CS, Cortez-Jugo C, Kent SJ, Caruso F. Influence of Poly(ethylene glycol) Molecular Architecture on Particle Assembly and Ex Vivo Particle-Immune Cell Interactions in Human Blood. ACS Nano 2021;15:10025-38. [PMID: 34009935 DOI: 10.1021/acsnano.1c01642] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
215 Crnogorac MĐ, Matić IZ, Damjanović A, Janković N, Krivokuća A, Stanojković T. 3D HeLa spheroids as a model for investigating the anticancer activity of Biginelli-hybrids. Chem Biol Interact 2021;345:109565. [PMID: 34161784 DOI: 10.1016/j.cbi.2021.109565] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
216 Caipa Garcia AL, Arlt VM, Phillips DH. Organoids for toxicology and genetic toxicology: applications with drugs and prospects for environmental carcinogenesis. Mutagenesis 2021:geab023. [PMID: 34147034 DOI: 10.1093/mutage/geab023] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
217 Fontana F, Marzagalli M, Sommariva M, Gagliano N, Limonta P. In Vitro 3D Cultures to Model the Tumor Microenvironment. Cancers (Basel) 2021;13:2970. [PMID: 34199324 DOI: 10.3390/cancers13122970] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
218 Liverani C, De Vita A, Spadazzi C, Miserocchi G, Cocchi C, Bongiovanni A, De Lucia A, La Manna F, Fabbri F, Tebaldi M, Amadori D, Tasciotti E, Martinelli G, Mercatali L, Ibrahim T. Lineage-specific mechanisms and drivers of breast cancer chemoresistance revealed by 3D biomimetic culture. Mol Oncol 2021. [PMID: 34109737 DOI: 10.1002/1878-0261.13037] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
219 Varone A, Nguyen JK, Leng L, Barrile R, Sliz J, Lucchesi C, Wen N, Gravanis A, Hamilton GA, Karalis K, Hinojosa CD. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it. Biomaterials 2021;275:120957. [PMID: 34130145 DOI: 10.1016/j.biomaterials.2021.120957] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
220 Lyadova I, Gerasimova T, Nenasheva T. Macrophages Derived From Human Induced Pluripotent Stem Cells: The Diversity of Protocols, Future Prospects, and Outstanding Questions. Front Cell Dev Biol 2021;9:640703. [PMID: 34150747 DOI: 10.3389/fcell.2021.640703] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
221 Soriano L, Khalid T, O'Brien FJ, O'Leary C, Cryan SA. A Tissue-Engineered Tracheobronchial In Vitro Co-Culture Model for Determining Epithelial Toxicological and Inflammatory Responses. Biomedicines 2021;9:631. [PMID: 34199462 DOI: 10.3390/biomedicines9060631] [Reference Citation Analysis]
222 Jauković A, Abadjieva D, Trivanović D, Stoyanova E, Kostadinova M, Pashova S, Kestendjieva S, Kukolj T, Jeseta M, Kistanova E, Mourdjeva M. Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties. Stem Cell Rev Rep 2020;16:853-75. [PMID: 32681232 DOI: 10.1007/s12015-020-10006-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
223 Untracht GR, Karnowski K, Sampson DD. Imaging the small with the small: Prospects for photonics in micro-endomicroscopy for minimally invasive cellular-resolution bioimaging. APL Photonics 2021;6:060901. [DOI: 10.1063/5.0052258] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
224 Mansouri M, Leipzig ND. Advances in removing mass transport limitations for more physiologically relevant in vitro 3D cell constructs. Biophysics Rev 2021;2:021305. [DOI: 10.1063/5.0048837] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
225 Zankovic S, Seidenstuecker M, Prall WC, Loos J, Maderer F, Oberle M, Latorre SH, Schilling P, Riedel B, Bernstein A. A Method for the Evaluation of Early Osseointegration of Implant Materials Ex Vivo: Human Bone Organ Model. Materials (Basel) 2021;14:3001. [PMID: 34206040 DOI: 10.3390/ma14113001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
226 Nabi SU, Ali SI, Rather MA, Sheikh WM, Altaf M, Singh H, Mumtaz PT, Mishra NC, Nazir SU, Bashir SM. Organoids: A new approach in toxicity testing of nanotherapeutics. J Appl Toxicol 2021. [PMID: 34060108 DOI: 10.1002/jat.4206] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
227 Hwang DG, Choi YM, Jang J. 3D Bioprinting-Based Vascularized Tissue Models Mimicking Tissue-Specific Architecture and Pathophysiology for in vitro Studies. Front Bioeng Biotechnol 2021;9:685507. [PMID: 34136473 DOI: 10.3389/fbioe.2021.685507] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
228 de Dios-Figueroa GT, Aguilera-Marquez JDR, Camacho-Villegas TA, Lugo-Fabres PH. 3D Cell Culture Models in COVID-19 Times: A Review of 3D Technologies to Understand and Accelerate Therapeutic Drug Discovery. Biomedicines 2021;9:602. [PMID: 34073231 DOI: 10.3390/biomedicines9060602] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
229 Song Y, Kim S, Heo J, Shum D, Lee SY, Lee M, Kim AR, Seo HR. Identification of hepatic fibrosis inhibitors through morphometry analysis of a hepatic multicellular spheroids model. Sci Rep 2021;11:10931. [PMID: 34035369 DOI: 10.1038/s41598-021-90263-x] [Reference Citation Analysis]
230 Supadmanaba IGP, Comandatore A, Morelli L, Giovannetti E, Lagerweij T. Organotypic-liver slide culture systems to explore the role of extracellular vesicles in pancreatic cancer metastatic behavior and guide new therapeutic approaches. Expert Opin Drug Metab Toxicol 2021;17:937-46. [PMID: 33945374 DOI: 10.1080/17425255.2021.1925646] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
231 Zahmatkesh E, Ghanian MH, Zarkesh I, Farzaneh Z, Halvaei M, Heydari Z, Moeinvaziri F, Othman A, Ruoß M, Piryaei A, Gramignoli R, Yakhkeshi S, Nüssler A, Najimi M, Baharvand H, Vosough M. Tissue-Specific Microparticles Improve Organoid Microenvironment for Efficient Maturation of Pluripotent Stem-Cell-Derived Hepatocytes. Cells 2021;10:1274. [PMID: 34063948 DOI: 10.3390/cells10061274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
232 Park J, Kim H, Park JK. Microfluidic channel-integrated hanging drop array chip operated by pushbuttons for spheroid culture and analysis. Analyst 2020;145:6974-80. [PMID: 32857069 DOI: 10.1039/d0an01091j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
233 Zhou Z, Zhu J, Jiang M, Sang L, Hao K, He H. The Combination of Cell Cultured Technology and In Silico Model to Inform the Drug Development. Pharmaceutics 2021;13:704. [PMID: 34065907 DOI: 10.3390/pharmaceutics13050704] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
234 Belfiore L, Aghaei B, Law AMK, Dobrowolski JC, Raftery LJ, Tjandra AD, Yee C, Piloni A, Volkerling A, Ferris CJ, Engel M. Generation and analysis of 3D cell culture models for drug discovery. Eur J Pharm Sci 2021;163:105876. [PMID: 33989755 DOI: 10.1016/j.ejps.2021.105876] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
235 Lopez-Gonzalez U, Casey A, Byrne HJ. Biochemical impact of solar radiation exposure on human keratinocytes monitored by Raman spectroscopy; effects of cell culture environment. J Biophotonics 2021;14:e202100058. [PMID: 33871950 DOI: 10.1002/jbio.202100058] [Reference Citation Analysis]
236 Peres C, Matos AI, Moura LIF, Acúrcio RC, Carreira B, Pozzi S, Vaskovich-Koubi D, Kleiner R, Satchi-Fainaro R, Florindo HF. Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021;172:148-82. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
237 Kang D, Park JA, Kim W, Kim S, Lee HR, Kim WJ, Yoo JY, Jung S. All-Inkjet-Printed 3D Alveolar Barrier Model with Physiologically Relevant Microarchitecture. Adv Sci (Weinh) 2021;8:2004990. [PMID: 34026463 DOI: 10.1002/advs.202004990] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
238 Pinho D, Santos D, Vila A, Carvalho S. Establishment of Colorectal Cancer Organoids in Microfluidic-Based System. Micromachines (Basel) 2021;12:497. [PMID: 33924829 DOI: 10.3390/mi12050497] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
239 Kazemi M, Jajarmi V, Nazarian H, Ghaffari Novin M, Salehpour S, Piryaei A, Heidari Khoei H, Choobineh H, Abdollahifar MA, Haji Molla Hoseini M, Heidari MH. Culture strategy as a modulator of target assessments: Functionality of suspension versus hanging drop-derived choriocarcinoma spheroids as in vitro model of embryo implantation. J Cell Biochem 2021. [PMID: 33900644 DOI: 10.1002/jcb.29940] [Reference Citation Analysis]
240 Langhans SA. Using 3D in vitro cell culture models in anti-cancer drug discovery. Expert Opin Drug Discov 2021;16:841-50. [PMID: 33823728 DOI: 10.1080/17460441.2021.1912731] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
241 Weber A, Pfaff M, Schöttler F, Schmidt V, Lichtenberg A, Akhyari P. Reproducible In Vitro Tissue Culture Model to Study Basic Mechanisms of Calcific Aortic Valve Disease: Comparative Analysis to Valvular Interstitials Cells. Biomedicines 2021;9:474. [PMID: 33925890 DOI: 10.3390/biomedicines9050474] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
242 Krokker L, Szabó B, Németh K, Tóháti R, Sarkadi B, Mészáros K, Patócs A, Butz H. Three Dimensional Cell Culturing for Modeling Adrenal and Pituitary Tumors. Pathol Oncol Res 2021;27:640676. [PMID: 34257605 DOI: 10.3389/pore.2021.640676] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
243 Meng X, Xing Y, Li J, Deng C, Li Y, Ren X, Zhang D. Rebuilding the Vascular Network: In vivo and in vitro Approaches. Front Cell Dev Biol 2021;9:639299. [PMID: 33968926 DOI: 10.3389/fcell.2021.639299] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
244 Brooks A, Liang X, Zhang Y, Zhao CX, Roberts MS, Wang H, Zhang L, Crawford DHG. Liver organoid as a 3D in vitro model for drug validation and toxicity assessment. Pharmacol Res 2021;169:105608. [PMID: 33852961 DOI: 10.1016/j.phrs.2021.105608] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
245 Pfohl U, Pflaume A, Regenbrecht M, Finkler S, Graf Adelmann Q, Reinhard C, Regenbrecht CRA, Wedeken L. Precision Oncology Beyond Genomics: The Future Is Here-It Is Just Not Evenly Distributed. Cells 2021;10:928. [PMID: 33920536 DOI: 10.3390/cells10040928] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
246 Jeger-Madiot N, Arakelian L, Setterblad N, Bruneval P, Hoyos M, Larghero J, Aider JL. Self-organization and culture of Mesenchymal Stem Cell spheroids in acoustic levitation. Sci Rep 2021;11:8355. [PMID: 33863936 DOI: 10.1038/s41598-021-87459-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
247 Cameron T, Bennet T, Rowe EM, Anwer M, Wellington CL, Cheung KC. Review of Design Considerations for Brain-on-a-Chip Models. Micromachines (Basel) 2021;12:441. [PMID: 33921018 DOI: 10.3390/mi12040441] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
248 Coltman NJ, Coke BA, Chatzi K, Shepherd EL, Lalor PF, Schulz-Utermoehl T, Hodges NJ. Application of HepG2/C3A liver spheroids as a model system for genotoxicity studies. Toxicol Lett 2021;345:34-45. [PMID: 33865918 DOI: 10.1016/j.toxlet.2021.04.004] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
249 Ahmed S, Salmon H, Distasio N, Do HD, Scherman D, Alhareth K, Tabrizian M, Mignet N. Viscous Core Liposomes Increase siRNA Encapsulation and Provides Gene Inhibition When Slightly Positively Charged. Pharmaceutics 2021;13:479. [PMID: 33916066 DOI: 10.3390/pharmaceutics13040479] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
250 Li Z, Langhans SA. In Vivo and Ex Vivo Pediatric Brain Tumor Models: An Overview. Front Oncol 2021;11:620831. [PMID: 33869004 DOI: 10.3389/fonc.2021.620831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
251 Bavoux M, Kamio Y, Vigneux-foley E, Lafontaine J, Najyb O, Refet-mollof E, Carrier J, Gervais T, Wong P. X-ray on chip: Quantifying therapeutic synergies between radiotherapy and anticancer drugs using soft tissue sarcoma tumor spheroids. Radiotherapy and Oncology 2021;157:175-81. [DOI: 10.1016/j.radonc.2021.01.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
252 Wan L, Yin J, Skoko J, Schwartz R, Zhang M, LeDuc PR, Neumann CA. 3D Collagen Vascular Tumor-on-a-Chip Mimetics for Dynamic Combinatorial Drug Screening. Mol Cancer Ther 2021;20:1210-9. [PMID: 33785649 DOI: 10.1158/1535-7163.MCT-20-0880] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
253 Ahire DS, Basit A, Karasu M, Prasad B. Ultrasensitive Quantification of Drug-metabolizing Enzymes and Transporters in Small Sample Volume by Microflow LC-MS/MS. J Pharm Sci 2021;110:2833-40. [PMID: 33785352 DOI: 10.1016/j.xphs.2021.03.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
254 Miserocchi G, Cocchi C, De Vita A, Liverani C, Spadazzi C, Calpona S, Di Menna G, Bassi M, Meccariello G, De Luca G, Campobassi A, Maddalena Tumedei M, Bongiovanni A, Fausti V, Cotelli F, Ibrahim T, Mercatali L. Three-dimensional collagen-based scaffold model to study the microenvironment and drug-resistance mechanisms of oropharyngeal squamous cell carcinomas. Cancer Biol Med 2021:j. [PMID: 33772505 DOI: 10.20892/j.issn.2095-3941.2020.0482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
255 Rae C, Amato F, Braconi C. Patient-Derived Organoids as a Model for Cancer Drug Discovery. Int J Mol Sci 2021;22:3483. [PMID: 33801782 DOI: 10.3390/ijms22073483] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
256 Dani V, Yao X, Dani C. Transplantation of fat tissues and iPSC-derived energy expenditure adipocytes to counteract obesity-driven metabolic disorders: Current strategies and future perspectives. Rev Endocr Metab Disord 2021. [PMID: 33751363 DOI: 10.1007/s11154-021-09632-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
257 Sun M, Liu A, Yang X, Gong J, Yu M, Yao X, Wang H, He Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? Adv NanoBio Res 2021;1:2000066. [DOI: 10.1002/anbr.202000066] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
258 Lawko N, Plaskasovitis C, Stokes C, Abelseth L, Fraser I, Sharma R, Kirsch R, Hasan M, Abelseth E, Willerth SM. 3D Tissue Models as an Effective Tool for Studying Viruses and Vaccine Development. Front Mater 2021;8:631373. [DOI: 10.3389/fmats.2021.631373] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
259 Oliveira M, Conceição P, Kant K, Ainla A, Diéguez L. Electrochemical Sensing in 3D Cell Culture Models: New Tools for Developing Better Cancer Diagnostics and Treatments. Cancers (Basel) 2021;13:1381. [PMID: 33803738 DOI: 10.3390/cancers13061381] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
260 Castellino S, Lareau NM, Groseclose MR. The emergence of imaging mass spectrometry in drug discovery and development: Making a difference by driving decision making. J Mass Spectrom 2021;56:e4717. [PMID: 33724654 DOI: 10.1002/jms.4717] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
261 García-Bernal D, García-Arranz M, Yáñez RM, Hervás-Salcedo R, Cortés A, Fernández-García M, Hernando-Rodríguez M, Quintana-Bustamante Ó, Bueren JA, García-Olmo D, Moraleda JM, Segovia JC, Zapata AG. The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy. Front Cell Dev Biol 2021;9:650664. [PMID: 33796536 DOI: 10.3389/fcell.2021.650664] [Cited by in Crossref: 2] [Cited by in F6Publishing: 28] [Article Influence: 2.0] [Reference Citation Analysis]
262 Baranyai Z, Biri-Kovács B, Krátký M, Szeder B, Debreczeni ML, Budai J, Kovács B, Horváth L, Pári E, Németh Z, Cervenak L, Zsila F, Méhes E, Kiss É, Vinšová J, Bősze S. Cellular Internalization and Inhibition Capacity of New Anti-Glioma Peptide Conjugates: Physicochemical Characterization and Evaluation on Various Monolayer- and 3D-Spheroid-Based in Vitro Platforms. J Med Chem 2021;64:2982-3005. [PMID: 33719423 DOI: 10.1021/acs.jmedchem.0c01399] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
263 Teixeira FC, Chaves S, Torres AL, Barrias CC, Bidarra SJ. Engineering a Vascularized 3D Hybrid System to Model Tumor-Stroma Interactions in Breast Cancer. Front Bioeng Biotechnol 2021;9:647031. [PMID: 33791288 DOI: 10.3389/fbioe.2021.647031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
264 Flores-Torres S, Peza-Chavez O, Kuasne H, Munguia-Lopez JG, Kort-Mascort J, Ferri L, Jiang T, Rajadurai CV, Park M, Sangwan V, Kinsella JM. Alginate-gelatin-Matrigel hydrogels enable the development and multigenerational passaging of patient-derived 3D bioprinted cancer spheroid models. Biofabrication 2021;13. [PMID: 33440351 DOI: 10.1088/1758-5090/abdb87] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
265 Lee CT, Gill EL, Wang W, Gerigk M, Terentjev EM, Shery Huang YY. Guided assembly of cancer ellipsoid on suspended hydrogel microfibers estimates multi-cellular traction force. Phys Biol 2021;18:036001. [PMID: 33412531 DOI: 10.1088/1478-3975/abd9aa] [Reference Citation Analysis]
266 Wagh K, Ishikawa M, Garcia DA, Stavreva DA, Upadhyaya A, Hager GL. Mechanical Regulation of Transcription: Recent Advances. Trends Cell Biol 2021;31:457-72. [PMID: 33712293 DOI: 10.1016/j.tcb.2021.02.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
267 Oner E, Kotmakci M, Baird AM, Gray SG, Debelec Butuner B, Bozkurt E, Kantarci AG, Finn SP. Development of EphA2 siRNA-loaded lipid nanoparticles and combination with a small-molecule histone demethylase inhibitor in prostate cancer cells and tumor spheroids. J Nanobiotechnology 2021;19:71. [PMID: 33685469 DOI: 10.1186/s12951-021-00781-z] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
268 Kreutzer FP, Meinecke A, Schmidt K, Fiedler J, Thum T. Alternative strategies in cardiac preclinical research and new clinical trial formats. Cardiovasc Res 2021:cvab075. [PMID: 33693475 DOI: 10.1093/cvr/cvab075] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
269 Zahmatkesh E, Khoshdel-Rad N, Mirzaei H, Shpichka A, Timashev P, Mahmoudi T, Vosough M. Evolution of organoid technology: Lessons learnt in Co-Culture systems from developmental biology. Dev Biol 2021;475:37-53. [PMID: 33684433 DOI: 10.1016/j.ydbio.2021.03.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
270 Distler T, Lauria I, Detsch R, Sauter CM, Bendt F, Kapr J, Rütten S, Boccaccini AR, Fritsche E. Neuronal Differentiation from Induced Pluripotent Stem Cell-Derived Neurospheres by the Application of Oxidized Alginate-Gelatin-Laminin Hydrogels. Biomedicines 2021;9:261. [PMID: 33808044 DOI: 10.3390/biomedicines9030261] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
271 Guyon J, Chapouly C, Andrique L, Bikfalvi A, Daubon T. The Normal and Brain Tumor Vasculature: Morphological and Functional Characteristics and Therapeutic Targeting. Front Physiol 2021;12:622615. [PMID: 33746770 DOI: 10.3389/fphys.2021.622615] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
272 An JH, Song WJ, Li Q, Bhang DH, Youn HY. 3D-culture models as drug-testing platforms in canine lymphoma and their cross talk with lymph node-derived stromal cells. J Vet Sci 2021;22:e25. [PMID: 33908202 DOI: 10.4142/jvs.2021.22.e25] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
273 Yen CH, Young TH, Huang TW. Cell detachment ratio on pH-responsive chitosan: A useful biometric for prognostic judgment and drug efficacy assessment in oncology. Carbohydr Polym 2021;261:117911. [PMID: 33766385 DOI: 10.1016/j.carbpol.2021.117911] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
274 Silvestri A, Vicente F, Vicent MJ, Stechmann B, Fecke W. Academic collaborative models fostering the translation of physiological in vitro systems from basic research into drug discovery. Drug Discov Today 2021;26:1369-81. [PMID: 33677144 DOI: 10.1016/j.drudis.2021.02.024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
275 Evans SE, Harrington T, Rodriguez Rivero MC, Rognin E, Tuladhar T, Daly R. 2D and 3D inkjet printing of biopharmaceuticals - A review of trends and future perspectives in research and manufacturing. Int J Pharm 2021;599:120443. [PMID: 33675921 DOI: 10.1016/j.ijpharm.2021.120443] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
276 Möller J, Pörtner R. Digital Twins for Tissue Culture Techniques—Concepts, Expectations, and State of the Art. Processes 2021;9:447. [DOI: 10.3390/pr9030447] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
277 Rodrigues J, Heinrich MA, Teixeira LM, Prakash J. 3D In Vitro Model (R)evolution: Unveiling Tumor–Stroma Interactions. Trends in Cancer 2021;7:249-64. [DOI: 10.1016/j.trecan.2020.10.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 76] [Article Influence: 21.0] [Reference Citation Analysis]
278 Donkers JM, Eslami Amirabadi H, van de Steeg E. Intestine-on-a-chip: Next level in vitro research model of the human intestine. Current Opinion in Toxicology 2021;25:6-14. [DOI: 10.1016/j.cotox.2020.11.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
279 Jafari A, Hassanajili S, Ghaffari F, Azarpira N. Modulating the physico-mechanical properties of polyacrylamide/gelatin hydrogels for tissue engineering application. Polym Bull 2022;79:1821-42. [DOI: 10.1007/s00289-021-03592-2] [Reference Citation Analysis]
280 Sánchez-salazar MG, Álvarez MM, Trujillo-de Santiago G. Advances in 3D bioprinting for the biofabrication of tumor models. Bioprinting 2021;21:e00120. [DOI: 10.1016/j.bprint.2020.e00120] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
281 Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020;143:3181-213. [PMID: 33020798 DOI: 10.1093/brain/awaa268] [Cited by in Crossref: 10] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
282 Ege N, Bouguenina H, Tatari M, Chopra R. Phenotypic screening with target identification and validation in the discovery and development of E3 ligase modulators. Cell Chem Biol 2021;28:283-99. [PMID: 33740433 DOI: 10.1016/j.chembiol.2021.02.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
283 Delle Cave D, Rizzo R, Sainz B Jr, Gigli G, Del Mercato LL, Lonardo E. The Revolutionary Roads to Study Cell-Cell Interactions in 3D In Vitro Pancreatic Cancer Models. Cancers (Basel) 2021;13:930. [PMID: 33672435 DOI: 10.3390/cancers13040930] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
284 Aldewachi H, Al-Zidan RN, Conner MT, Salman MM. High-Throughput Screening Platforms in the Discovery of Novel Drugs for Neurodegenerative Diseases. Bioengineering (Basel) 2021;8:30. [PMID: 33672148 DOI: 10.3390/bioengineering8020030] [Cited by in Crossref: 31] [Cited by in F6Publishing: 54] [Article Influence: 31.0] [Reference Citation Analysis]
285 Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021;9:626805. [PMID: 33732695 DOI: 10.3389/fcell.2021.626805] [Cited by in Crossref: 2] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
286 Talty R, Olino K. Metabolism of Innate Immune Cells in Cancer. Cancers (Basel) 2021;13:904. [PMID: 33670082 DOI: 10.3390/cancers13040904] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
287 Locquet MA, Dechaume AL, Berchard P, Abbes L, Pissaloux D, Tirode F, Ramos I, Bedoucha J, Valantin J, Karanian M, Perret R, Gille O, Blay JY, Dutour A. Aldehyde Dehydrogenase, a Therapeutic Target in Chordoma: Analysis in 3D Cellular Models. Cells 2021;10:399. [PMID: 33672032 DOI: 10.3390/cells10020399] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
288 De Pieri A, Korman BD, Jüngel A, Wuertz-Kozak K. Engineering Advanced In Vitro Models of Systemic Sclerosis for Drug Discovery and Development. Adv Biol (Weinh) 2021;5:e2000168. [PMID: 33852183 DOI: 10.1002/adbi.202000168] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
289 Chang CJ, Taniguchi A. Establishment of a Nanopatterned Renal Disease Model by Mimicking the Physical and Chemical Cues of a Diseased Mesangial Cell Microenvironment. ACS Appl Bio Mater 2021;4:1573-83. [PMID: 35014506 DOI: 10.1021/acsabm.0c01406] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
290 Saydé T, El Hamoui O, Alies B, Gaudin K, Lespes G, Battu S. Biomaterials for Three-Dimensional Cell Culture: From Applications in Oncology to Nanotechnology. Nanomaterials (Basel) 2021;11:481. [PMID: 33668665 DOI: 10.3390/nano11020481] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
291 Duzagac F, Saorin G, Memeo L, Canzonieri V, Rizzolio F. Microfluidic Organoids-on-a-Chip: Quantum Leap in Cancer Research. Cancers (Basel) 2021;13:737. [PMID: 33578886 DOI: 10.3390/cancers13040737] [Cited by in Crossref: 7] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
292 Li PJ, Roose JP, Jablons DM, Kratz JR. Bioinformatic Approaches to Validation and Functional Analysis of 3D Lung Cancer Models. Cancers (Basel) 2021;13:701. [PMID: 33572297 DOI: 10.3390/cancers13040701] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
293 Kang S, Park S, Baek I, Song Y, Kim S, Choi D, Kim J, Lee Y. Development of poly(D,L-lactic-co-glycolic acid) films coated with biomembrane-mimicking polymers for anti-adhesion activity. Mater Sci Eng C Mater Biol Appl 2021;120:111780. [PMID: 33545908 DOI: 10.1016/j.msec.2020.111780] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
294 AlMusawi S, Ahmed M, Nateri AS. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin Transl Med 2021;11:e308. [PMID: 33635003 DOI: 10.1002/ctm2.308] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
295 Colombo E, Cattaneo MG. Multicellular 3D Models to Study Tumour-Stroma Interactions. Int J Mol Sci 2021;22:1633. [PMID: 33562840 DOI: 10.3390/ijms22041633] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
296 Struzyna LA, Watt ML. The Emerging Role of Neuronal Organoid Models in Drug Discovery: Potential Applications and Hurdles to Implementation. Mol Pharmacol 2021;99:256-65. [PMID: 33547249 DOI: 10.1124/molpharm.120.000142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
297 Liu F, Song DY, Huang J, Yang HQ, You D, Ni JD. Long non-coding RNA CIR inhibits chondrogenic differentiation of mesenchymal stem cells by epigenetically suppressing ATOH8 via methyltransferase EZH2. Mol Med 2021;27:12. [PMID: 33546582 DOI: 10.1186/s10020-021-00272-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
298 Malhão F, Ramos AA, Macedo AC, Rocha E. Cytotoxicity of Seaweed Compounds, Alone or Combined to Reference Drugs, against Breast Cell Lines Cultured in 2D and 3D. Toxics 2021;9:24. [PMID: 33572635 DOI: 10.3390/toxics9020024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
299 Troendle K, Rizzo L, Pichler R, Koch F, Itani A, Zengerle R, Lienkamp SS, Koltay P, Zimmermann S. Scalable fabrication of renal spheroids and nephron-like tubules by bioprinting and controlled self-assembly of epithelial cells. Biofabrication 2021. [PMID: 33513594 DOI: 10.1088/1758-5090/abe185] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
300 Moysidou CM, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2020;8:620962. [PMID: 33585419 DOI: 10.3389/fbioe.2020.620962] [Cited by in Crossref: 5] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
301 Sakalem ME, De Sibio MT, da Costa FADS, de Oliveira M. Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnol J 2021;16:e2000463. [PMID: 33491924 DOI: 10.1002/biot.202000463] [Cited by in Crossref: 3] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
302 Liang D, Su W, Tan M. Advances of microfluidic intestine-on-a-chip for analyzing anti-inflammation of food. Crit Rev Food Sci Nutr 2021;:1-17. [PMID: 33480263 DOI: 10.1080/10408398.2021.1875395] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
303 Pountos I, Panteli M, Walters G, Giannoudis PV. NSAIDs inhibit bone healing through the downregulation of TGF-β3 expression during endochondral ossification. Injury 2021;52:1294-9. [PMID: 33472741 DOI: 10.1016/j.injury.2021.01.007] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
304 Pennarossa G, Arcuri S, De Iorio T, Gandolfi F, Brevini TAL. Current Advances in 3D Tissue and Organ Reconstruction. Int J Mol Sci 2021;22:E830. [PMID: 33467648 DOI: 10.3390/ijms22020830] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
305 Cortesi M, Liverani C, Mercatali L, Ibrahim T, Giordano E. Development and validation of an in-silico tool for the study of therapeutic agents in 3D cell cultures. Comput Biol Med 2021;130:104211. [PMID: 33476993 DOI: 10.1016/j.compbiomed.2021.104211] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
306 Jang EJ, Sung JY, Yoo HE, Jang H, Shim J, Oh ES, Goh SH, Kim YN. FAM188B Downregulation Sensitizes Lung Cancer Cells to Anoikis via EGFR Downregulation and Inhibits Tumor Metastasis In Vivo. Cancers (Basel) 2021;13:E247. [PMID: 33440835 DOI: 10.3390/cancers13020247] [Reference Citation Analysis]
307 Fernando K, Kwang LG, Lim JTC, Fong ELS. Hydrogels to engineer tumor microenvironments in vitro. Biomater Sci 2021;9:2362-83. [DOI: 10.1039/d0bm01943g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
308 Santi M, Mapanao AK, Biancalana L, Marchetti F, Voliani V. Ruthenium arene complexes in the treatment of 3D models of head and neck squamous cell carcinomas. Eur J Med Chem 2021;212:113143. [PMID: 33445155 DOI: 10.1016/j.ejmech.2020.113143] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
309 Hassan G, Afify SM, Kitano S, Seno A, Ishii H, Shang Y, Matsusaki M, Seno M. Cancer Stem Cell Microenvironment Models with Biomaterial Scaffolds In Vitro. Processes 2021;9:45. [DOI: 10.3390/pr9010045] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
310 de Almeida Fiuza LF, Batista DDGJ, Nunes DF, Moreira OC, Cascabulho C, Soeiro MNC. Benznidazole modulates release of inflammatory mediators by cardiac spheroids infected with Trypanosoma cruzi. Exp Parasitol 2021;221:108061. [PMID: 33383023 DOI: 10.1016/j.exppara.2020.108061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
311 Bazzolo B, Sieni E, Zamuner A, Roso M, Russo T, Gloria A, Dettin M, Conconi MT. Breast Cancer Cell Cultures on Electrospun Poly(ε-Caprolactone) as a Potential Tool for Preclinical Studies on Anticancer Treatments. Bioengineering (Basel) 2020;8:1. [PMID: 33375053 DOI: 10.3390/bioengineering8010001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
312 Delbridge ARD, Huh D, Brickelmaier M, Burns JC, Roberts C, Challa R, Raymond N, Cullen P, Carlile TM, Ennis KA, Liu M, Sun C, Allaire NE, Foos M, Tsai HH, Franchimont N, Ransohoff RM, Butts C, Mingueneau M. Organotypic Brain Slice Culture Microglia Exhibit Molecular Similarity to Acutely-Isolated Adult Microglia and Provide a Platform to Study Neuroinflammation. Front Cell Neurosci 2020;14:592005. [PMID: 33473245 DOI: 10.3389/fncel.2020.592005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
313 García-Posadas L, Diebold Y. Three-Dimensional Human Cell Culture Models to Study the Pathophysiology of the Anterior Eye. Pharmaceutics 2020;12:E1215. [PMID: 33333869 DOI: 10.3390/pharmaceutics12121215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
314 Nagle PW, Coppes RP. Current and Future Perspectives of the Use of Organoids in Radiobiology. Cells 2020;9:E2649. [PMID: 33317153 DOI: 10.3390/cells9122649] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
315 Oh MS, Khawar IA, Lee DW, Park JK, Kuh HJ. Three-Dimensional Imaging for Multiplex Phenotypic Analysis of Pancreatic Microtumors Grown on a Minipillar Array Chip. Cancers (Basel) 2020;12:E3662. [PMID: 33297288 DOI: 10.3390/cancers12123662] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
316 Gronbach L, Jurmeister P, Schäfer-Korting M, Keilholz U, Tinhofer I, Zoschke C. Primary Extracellular Matrix Enables Long-Term Cultivation of Human Tumor Oral Mucosa Models. Front Bioeng Biotechnol 2020;8:579896. [PMID: 33344431 DOI: 10.3389/fbioe.2020.579896] [Reference Citation Analysis]
317 Yakavets I, Francois A, Benoit A, Merlin JL, Bezdetnaya L, Vogin G. Advanced co-culture 3D breast cancer model for investigation of fibrosis induced by external stimuli: optimization study. Sci Rep 2020;10:21273. [PMID: 33277538 DOI: 10.1038/s41598-020-78087-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
318 Tanskanen JMA, Ahtiainen A, Hyttinen JAK. Toward Closed-Loop Electrical Stimulation of Neuronal Systems: A Review. Bioelectricity 2020;2:328-47. [PMID: 34471853 DOI: 10.1089/bioe.2020.0028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
319 Fröhlich E. Issues with Cancer Spheroid Models in Therapeutic Drug Screening. Curr Pharm Des 2020;26:2137-48. [PMID: 32067603 DOI: 10.2174/1381612826666200218094200] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
320 Corallo D, Frabetti S, Candini O, Gregianin E, Dominici M, Fischer H, Aveic S. Emerging Neuroblastoma 3D In Vitro Models for Pre-Clinical Assessments. Front Immunol 2020;11:584214. [PMID: 33324402 DOI: 10.3389/fimmu.2020.584214] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
321 Haykal MM, Nahmias C, Varon C, Martin OCB. Organotypic Modeling of the Tumor Landscape. Front Cell Dev Biol 2020;8:606039. [PMID: 33330508 DOI: 10.3389/fcell.2020.606039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
322 Tang Y, Xu Q, Yan M, Zhang Y, Zhu P, Li X, Sang L, Zhang M, Huang W, Lin L, Wu J, Xin Y, Fu J, Zhang L, Zhang S, Gu J. Autologous culture method improves retention of tumors' native properties. Sci Rep 2020;10:20455. [PMID: 33235257 DOI: 10.1038/s41598-020-77238-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
323 Heo CE, Hong A, Kim M, Lee JW, Chae SY, Sung KW, Lee JW, Heo SW, Kim HI. Probing drug delivery and mechanisms of action in 3D spheroid cells by quantitative analysis. Analyst 2020;145:7687-94. [PMID: 32975245 DOI: 10.1039/d0an01518k] [Reference Citation Analysis]
324 Ceballos MP, Angel A, Delprato CB, Livore VI, Ferretti AC, Lucci A, Comanzo CG, Alvarez ML, Quiroga AD, Mottino AD, Carrillo MC. Sirtuin 1 and 2 inhibitors enhance the inhibitory effect of sorafenib in hepatocellular carcinoma cells. Eur J Pharmacol 2021;892:173736. [PMID: 33220273 DOI: 10.1016/j.ejphar.2020.173736] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
325 Liu D, Chen S, Win Naing M. A review of manufacturing capabilities of cell spheroid generation technologies and future development. Biotechnol Bioeng 2021;118:542-54. [PMID: 33146407 DOI: 10.1002/bit.27620] [Cited by in Crossref: 6] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
326 Minamihata K, Hamada Y, Kagawa G, Ramadhan W, Higuchi A, Moriyama K, Wakabayashi R, Goto M, Kamiya N. Dual-Functionalizable Streptavidin-SpyCatcher-Fused Protein-Polymer Hydrogels as Scaffolds for Cell Culture. ACS Appl Bio Mater 2020;3:7734-42. [PMID: 35019513 DOI: 10.1021/acsabm.0c00940] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
327 Lacalle-Aurioles M, Cassel de Camps C, Zorca CE, Beitel LK, Durcan TM. Applying hiPSCs and Biomaterials Towards an Understanding and Treatment of Traumatic Brain Injury. Front Cell Neurosci 2020;14:594304. [PMID: 33281561 DOI: 10.3389/fncel.2020.594304] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
328 Lim GE, Sung JY, Yu S, Kim Y, Shim J, Kim HJ, Cho ML, Lee JS, Kim YN. Pygenic Acid A (PA) Sensitizes Metastatic Breast Cancer Cells to Anoikis and Inhibits Metastasis In Vivo. Int J Mol Sci 2020;21:E8444. [PMID: 33182770 DOI: 10.3390/ijms21228444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
329 Biancur DE, Kapner KS, Yamamoto K, Banh RS, Neggers JE, Sohn ASW, Wu W, Manguso RT, Brown A, Root DE, Aguirre AJ, Kimmelman AC. Functional Genomics Identifies Metabolic Vulnerabilities in Pancreatic Cancer. Cell Metab 2021;33:199-210.e8. [PMID: 33152323 DOI: 10.1016/j.cmet.2020.10.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
330 Dalir Abdolahinia E, Jafari B, Parvizpour S, Barar J, Nadri S, Omidi Y. Role of cellulose family in fibril organization of collagen for forming 3D cancer spheroids: In vitro and in silico approach. Bioimpacts 2021;11:111-7. [PMID: 33842281 DOI: 10.34172/bi.2021.18] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
331 Gori M, Giannitelli SM, Torre M, Mozetic P, Abbruzzese F, Trombetta M, Traversa E, Moroni L, Rainer A. Biofabrication of Hepatic Constructs by 3D Bioprinting of a Cell-Laden Thermogel: An Effective Tool to Assess Drug-Induced Hepatotoxic Response. Adv Healthc Mater 2020;9:e2001163. [PMID: 32940019 DOI: 10.1002/adhm.202001163] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
332 Roberge CL, Kingsley DM, Faulkner DE, Sloat CJ, Wang L, Barroso M, Intes X, Corr DT. Non-Destructive Tumor Aggregate Morphology and Viability Quantification at Cellular Resolution, During Development and in Response to Drug. Acta Biomater 2020;117:322-34. [PMID: 33007490 DOI: 10.1016/j.actbio.2020.09.042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
333 Chi CW, Lao YH, Ahmed AHR, Benoy EC, Li C, Dereli-Korkut Z, Fu BM, Leong KW, Wang S. High-Throughput Tumor-on-a-Chip Platform to Study Tumor-Stroma Interactions and Drug Pharmacokinetics. Adv Healthc Mater 2020;9:e2000880. [PMID: 32965088 DOI: 10.1002/adhm.202000880] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
334 Ben Hamouda S, Vargas A, Boivin R, Miglino MA, da Palma RK, Lavoie JP. Recellularization of Bronchial Extracellular Matrix With Primary Bronchial Smooth Muscle Cells. J Equine Vet Sci 2021;96:103313. [PMID: 33349413 DOI: 10.1016/j.jevs.2020.103313] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
335 Perez JE, Nagle I, Wilhelm C. Magnetic molding of tumor spheroids: emerging model for cancer screening. Biofabrication 2020. [PMID: 33126227 DOI: 10.1088/1758-5090/abc670] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
336 Qiu B, Bessler N, Figler K, Buchholz MB, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. Adv Funct Mater 2020;30:1910250. [PMID: 34566552 DOI: 10.1002/adfm.201910250] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
337 Pasteuning-Vuhman S, de Jongh R, Timmers A, Pasterkamp RJ. Towards Advanced iPSC-based Drug Development for Neurodegenerative Disease. Trends Mol Med 2021;27:263-79. [PMID: 33121873 DOI: 10.1016/j.molmed.2020.09.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
338 Dasgupta D, Pally D, Saini DK, Bhat R, Ghosh A. Nanomotors Sense Local Physicochemical Heterogeneities in Tumor Microenvironments*. Angew Chem Int Ed Engl 2020;59:23690-6. [PMID: 32918839 DOI: 10.1002/anie.202008681] [Cited by in Crossref: 11] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
339 Breznica P, Koliqi R, Daka A. A review of the current understanding of nanoparticles protein corona composition. Med Pharm Rep 2020;93:342-50. [PMID: 33225259 DOI: 10.15386/mpr-1756] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
340 Dasgupta D, Pally D, Saini DK, Bhat R, Ghosh A. Nanomotors Sense Local Physicochemical Heterogeneities in Tumor Microenvironments**. Angew Chem 2020;132:23898-904. [DOI: 10.1002/ange.202008681] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
341 Fu SX, Zuo P, Ye BC. A Novel Wick-Like Paper-Based Microfluidic Device for 3D Cell Culture and Anti-Cancer Drugs Screening. Biotechnol J 2021;16:e2000126. [PMID: 33460221 DOI: 10.1002/biot.202000126] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
342 Chen X, Zhang YS, Zhang X, Liu C. Organ-on-a-chip platforms for accelerating the evaluation of nanomedicine. Bioact Mater 2021;6:1012-27. [PMID: 33102943 DOI: 10.1016/j.bioactmat.2020.09.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
343 Jo H, Park Y, Kim J, Kwon H, Kim T, Lee J, Pyun JC, Lee M, Yun M. Elevated miR-16-5p induces somatostatin receptor 2 expression in neuroendocrine tumor cells. PLoS One 2020;15:e0240107. [PMID: 33045023 DOI: 10.1371/journal.pone.0240107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
344 Cucchi DGJ, Groen RWJ, Janssen JJWM, Cloos J. Ex vivo cultures and drug testing of primary acute myeloid leukemia samples: Current techniques and implications for experimental design and outcome. Drug Resist Updat 2020;53:100730. [PMID: 33096284 DOI: 10.1016/j.drup.2020.100730] [Cited by in Crossref: 3] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
345 Bhattacharya S, Calar K, Evans C, Petrasko M, de la Puente P. Bioengineering the Oxygen-Deprived Tumor Microenvironment Within a Three-Dimensional Platform for Studying Tumor-Immune Interactions. Front Bioeng Biotechnol 2020;8:1040. [PMID: 33015012 DOI: 10.3389/fbioe.2020.01040] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
346 Kaufman G, Skrtic D. N-Acetyl Cysteine Modulates the Inflammatory and Oxidative Stress Responses of Rescued Growth-Arrested Dental Pulp Microtissues Exposed to TEGDMA in ECM. Int J Mol Sci 2020;21:E7318. [PMID: 33023018 DOI: 10.3390/ijms21197318] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
347 Huo KG, D'Arcangelo E, Tsao MS. Patient-derived cell line, xenograft and organoid models in lung cancer therapy. Transl Lung Cancer Res 2020;9:2214-32. [PMID: 33209645 DOI: 10.21037/tlcr-20-154] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
348 Maeda Y, Kikuchi R, Kawagoe J, Tsuji T, Koyama N, Yamaguchi K, Nakamura H, Aoshiba K. Anti-cancer strategy targeting the energy metabolism of tumor cells surviving a low-nutrient acidic microenvironment. Mol Metab 2020;42:101093. [PMID: 33007425 DOI: 10.1016/j.molmet.2020.101093] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
349 Alzeeb G, Metges JP, Corcos L, Le Jossic-Corcos C. Three-Dimensional Culture Systems in Gastric Cancer Research. Cancers (Basel) 2020;12:E2800. [PMID: 33003476 DOI: 10.3390/cancers12102800] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
350 Pustchi SE, Avci NG, Akay YM, Akay M. Astrocytes Decreased the Sensitivity of Glioblastoma Cells to Temozolomide and Bay 11-7082. Int J Mol Sci 2020;21:E7154. [PMID: 32998285 DOI: 10.3390/ijms21197154] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
351 Khalil AS, Jaenisch R, Mooney DJ. Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev 2020;158:116-39. [PMID: 32987094 DOI: 10.1016/j.addr.2020.09.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
352 Suhito IR, Angeline N, Lee KH, Kim H, Park CG, Luo Z, Kim TH. A Spheroid-Forming Hybrid Gold Nanostructure Platform That Electrochemically Detects Anticancer Effects of Curcumin in a Multicellular Brain Cancer Model. Small 2021;17:e2002436. [PMID: 32954643 DOI: 10.1002/smll.202002436] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
353 Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S, Bolduc S. Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel) 2020;7:E115. [PMID: 32957528 DOI: 10.3390/bioengineering7030115] [Cited by in Crossref: 7] [Cited by in F6Publishing: 26] [Article Influence: 3.5] [Reference Citation Analysis]
354 Lee MW, Miljanic M, Triplett T, Ramirez C, Aung KL, Eckhardt SG, Capasso A. Current methods in translational cancer research. Cancer Metastasis Rev 2021;40:7-30. [PMID: 32929562 DOI: 10.1007/s10555-020-09931-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
355 Theard PL, Sheffels E, Sealover NE, Linke AJ, Pratico DJ, Kortum RL. Marked synergy by vertical inhibition of EGFR signaling in NSCLC spheroids shows SOS1 is a therapeutic target in EGFR-mutated cancer. Elife 2020;9:e58204. [PMID: 32897190 DOI: 10.7554/eLife.58204] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
356 Tang R, Umemori K, Rabin J, Alsberg E. Bi-functional nanoparticle-stabilized hydrogel colloidosomes as both extracellular matrix and bioactive factor delivery vehicle. Adv Ther (Weinh) 2020;3:2000156. [PMID: 34327284 DOI: 10.1002/adtp.202000156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
357 Shah H, Tariq I, Engelhardt K, Bakowsky U, Pinnapireddy SR. Development and Characterization of Ultrasound Activated Lipopolyplexes for Enhanced Transfection by Low Frequency Ultrasound in In Vitro Tumor Model. Macromol Biosci 2020;20:2000173. [DOI: 10.1002/mabi.202000173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
358 Shiju TM, Carlos de Oliveira R, Wilson SE. 3D in vitro corneal models: A review of current technologies. Exp Eye Res 2020;200:108213. [PMID: 32890484 DOI: 10.1016/j.exer.2020.108213] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
359 Min S, Lee HJ, Jin Y, Kim YH, Sung J, Choi HJ, Cho SW. Biphasic Electrical Pulse by a Micropillar Electrode Array Enhances Maturation and Drug Response of Reprogrammed Cardiac Spheroids. Nano Lett 2020;20:6947-56. [PMID: 32877191 DOI: 10.1021/acs.nanolett.0c01141] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
360 Swevers L, Denecke S, Vogelsang K, Geibel S, Vontas J. Can the mammalian organoid technology be applied to the insect gut? Pest Manag Sci 2021;77:55-63. [PMID: 32865304 DOI: 10.1002/ps.6067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
361 Migisha Ntwali P, Heo CE, Han JY, Chae SY, Kim M, Vu HM, Kim M, Kim HI. Mass spectrometry-based proteomics of single cells and organoids: The new generation of cancer research. TrAC Trends in Analytical Chemistry 2020;130:116005. [DOI: 10.1016/j.trac.2020.116005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
362 Guo H, Ji J, Wang J, Sun X. Co-contamination and interaction of fungal toxins and other environmental toxins. Trends in Food Science & Technology 2020;103:162-78. [DOI: 10.1016/j.tifs.2020.06.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
363 Xu Y, Tian Y, Tong D, Zhang H, Luo Z, Shang X, Dong Y. Wnt Signaling Inhibits High-Density Cell Sheet Culture Induced Mesenchymal Stromal Cell Aging by Targeting Cell Cycle Inhibitor p27. Front Bioeng Biotechnol 2020;8:946. [PMID: 32850766 DOI: 10.3389/fbioe.2020.00946] [Reference Citation Analysis]
364 Basu A, Dydowiczová A, Trosko JE, Bláha L, Babica P. Ready to go 3D? A semi-automated protocol for microwell spheroid arrays to increase scalability and throughput of 3D cell culture testing. Toxicol Mech Methods 2020;30:590-604. [PMID: 32713235 DOI: 10.1080/15376516.2020.1800881] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
365 Niora M, Pedersbæk D, Münter R, Weywadt MFV, Farhangibarooji Y, Andresen TL, Simonsen JB, Jauffred L. Head-to-Head Comparison of the Penetration Efficiency of Lipid-Based Nanoparticles into Tumor Spheroids. ACS Omega 2020;5:21162-71. [PMID: 32875252 DOI: 10.1021/acsomega.0c02879] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
366 Nguyen K, Nuß B, Mühlberger M, Unterweger H, Friedrich RP, Alexiou C, Janko C. Superparamagnetic Iron Oxide Nanoparticles Carrying Chemotherapeutics Improve Drug Efficacy in Monolayer and Spheroid Cell Culture by Enabling Active Accumulation. Nanomaterials (Basel) 2020;10:E1577. [PMID: 32796757 DOI: 10.3390/nano10081577] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
367 Gronbach L, Wolff C, Klinghammer K, Stellmacher J, Jurmeister P, Alexiev U, Schäfer-Korting M, Tinhofer I, Keilholz U, Zoschke C. A multilayered epithelial mucosa model of head neck squamous cell carcinoma for analysis of tumor-microenvironment interactions and drug development. Biomaterials 2020;258:120277. [PMID: 32795620 DOI: 10.1016/j.biomaterials.2020.120277] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
368 Soucy JR, Bindas AJ, Brady R, Torregrosa T, Denoncourt CM, Hosic S, Dai G, Koppes AN, Koppes RA. Reconfigurable Microphysiological Systems for Modeling Innervation and Multitissue Interactions. Adv Biosyst 2020;4:e2000133. [PMID: 32755004 DOI: 10.1002/adbi.202000133] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
369 Smits IP, Blaschuk OW, Willerth SM. Novel N-cadherin antagonist causes glioblastoma cell death in a 3D bioprinted co-culture model. Biochemical and Biophysical Research Communications 2020;529:162-8. [DOI: 10.1016/j.bbrc.2020.06.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
370 Majerník M, Jendželovský R, Fedoročko P. Potentiality, Limitations, and Consequences of Different Experimental Models to Improve Photodynamic Therapy for Cancer Treatment in Relation to Antiangiogenic Mechanism. Cancers (Basel) 2020;12:E2118. [PMID: 32751731 DOI: 10.3390/cancers12082118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
371 Czuba-wojnilowicz E, Miellet S, Glab A, Viventi S, Cavalieri F, Cortez-jugo C, Dottori M, Caruso F. Distribution of Particles in Human Stem Cell-Derived 3D Neuronal Cell Models: Effect of Particle Size, Charge, and Density. Biomacromolecules 2020;21:3186-96. [DOI: 10.1021/acs.biomac.0c00626] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
372 Yadav A, Seth B, Chaturvedi RK. Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist 2021;27:388-426. [PMID: 32723210 DOI: 10.1177/1073858420943192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
373 Yaralı ZB, Onak G, Karaman O. Effect of Integrin Binding Peptide on Vascularization of Scaffold-Free Microtissue Spheroids. Tissue Eng Regen Med 2020;17:595-605. [PMID: 32710228 DOI: 10.1007/s13770-020-00281-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
374 Dong L, Ravaynia PS, Huang QA, Hierlemann A, Modena MM. Parallelized Wireless Sensing System for Continuous Monitoring of Microtissue Spheroids. ACS Sens 2020;5:2036-43. [PMID: 32519548 DOI: 10.1021/acssensors.0c00481] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
375 Mohapatra SS, Frisina RD, Mohapatra S, Sneed KB, Markoutsa E, Wang T, Dutta R, Damnjanovic R, Phan M, Denmark DJ, Biswal MR, Mcgill AR, Green R, Howell M, Ghosh P, Gonzalez A, Ahmed NT, Borresen B, Farmer M, Gaeta M, Sharma K, Bouchard C, Gamboni D, Martin J, Tolve B, Singh M, Judy JW, Li C, Santra S, Daunert S, Zeynaloo E, Gelfand RM, Lenhert S, Mclamore ES, Xiang D, Morgan V, Friedersdorf LE, Lal R, Webster TJ, Hoogerheide DP, Nguyen TD, D'souza MJ, Çulha M, Kondiah PPD, Martin DK. Advances in Translational Nanotechnology: Challenges and Opportunities. Applied Sciences 2020;10:4881. [DOI: 10.3390/app10144881] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
376 Zanoni M, Cortesi M, Zamagni A, Arienti C, Pignatta S, Tesei A. Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol 2020;13:97. [PMID: 32677979 DOI: 10.1186/s13045-020-00931-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 51] [Article Influence: 12.0] [Reference Citation Analysis]
377 McCrary MW, Bousalis D, Mobini S, Song YH, Schmidt CE. Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues. Acta Biomater 2020;111:1-19. [PMID: 32464269 DOI: 10.1016/j.actbio.2020.05.031] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 13.5] [Reference Citation Analysis]
378 Doulgkeroglou MN, Di Nubila A, Niessing B, König N, Schmitt RH, Damen J, Szilvassy SJ, Chang W, Csontos L, Louis S, Kugelmeier P, Ronfard V, Bayon Y, Zeugolis DI. Automation, Monitoring, and Standardization of Cell Product Manufacturing. Front Bioeng Biotechnol 2020;8:811. [PMID: 32766229 DOI: 10.3389/fbioe.2020.00811] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
379 Ramadhan W, Ohama Y, Minamihata K, Moriyama K, Wakabayashi R, Goto M, Kamiya N. Redox-responsive functionalized hydrogel marble for the generation of cellular spheroids. J Biosci Bioeng 2020;130:416-23. [PMID: 32636145 DOI: 10.1016/j.jbiosc.2020.05.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
380 Morizur L, Herardot E, Monville C, Ben M'Barek K. Human pluripotent stem cells: A toolbox to understand and treat retinal degeneration. Mol Cell Neurosci 2020;107:103523. [PMID: 32634576 DOI: 10.1016/j.mcn.2020.103523] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
381 Aronsson C, Jury M, Naeimipour S, Boroojeni FR, Christoffersson J, Lifwergren P, Mandenius C, Selegård R, Aili D. Dynamic peptide-folding mediated biofunctionalization and modulation of hydrogels for 4D bioprinting. Biofabrication 2020;12:035031. [DOI: 10.1088/1758-5090/ab9490] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
382 Pitingolo G, He Y, Huang B, Wang L, Shi J, Chen Y. An automatic cell culture platform for differentiation of human induced pluripotent stem cells. Microelectronic Engineering 2020;231:111371. [DOI: 10.1016/j.mee.2020.111371] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
383 Thakor J, Ahadian S, Niakan A, Banton E, Nasrollahi F, Hasani-Sadrabadi MM, Khademhosseini A. Engineered Hydrogels for Brain Tumor Culture and Therapy. Biodes Manuf 2020;3:203-26. [PMID: 32754347 DOI: 10.1007/s42242-020-00084-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
384 Aughton K, Shahidipour H, Djirackor L, Coupland SE, Kalirai H. Characterization of Uveal Melanoma Cell Lines and Primary Tumor Samples in 3D Culture. Transl Vis Sci Technol. 2020;9:39. [PMID: 32832244 DOI: 10.1167/tvst.9.7.39] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
385 Fernandes S, Cassani M, Pagliari S, Filipensky P, Cavalieri F, Forte G. Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Curr Med Chem 2020;27:7234-55. [PMID: 32586245 DOI: 10.2174/0929867327666200625151134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
386 Cavo M, Delle Cave D, D'Amone E, Gigli G, Lonardo E, Del Mercato LL. A synergic approach to enhance long-term culture and manipulation of MiaPaCa-2 pancreatic cancer spheroids. Sci Rep 2020;10:10192. [PMID: 32576846 DOI: 10.1038/s41598-020-66908-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
387 Aggarwal V, Miranda O, Johnston PA, Sant S. Three dimensional engineered models to study hypoxia biology in breast cancer. Cancer Lett 2020;490:124-42. [PMID: 32569616 DOI: 10.1016/j.canlet.2020.05.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
388 Huang SW, Tzeng SC, Chen JK, Sun JS, Lin FH. A Dynamic Hanging-Drop System for Mesenchymal Stem Cell Culture. Int J Mol Sci 2020;21:E4298. [PMID: 32560269 DOI: 10.3390/ijms21124298] [Cited by in Crossref: 4] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
389 Fan TW, Higashi RM, Chernayavskaya Y, Lane AN. Resolving Metabolic Heterogeneity in Experimental Models of the Tumor Microenvironment from a Stable Isotope Resolved Metabolomics Perspective. Metabolites 2020;10:E249. [PMID: 32549391 DOI: 10.3390/metabo10060249] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
390 Shehzad A, Ravinayagam V, AlRumaih H, Aljafary M, Almohazey D, Almofty S, Al-Rashid NA, Al-Suhaimi EA. Application of Three-dimensional (3D) Tumor Cell Culture Systems and Mechanism of Drug Resistance. Curr Pharm Des 2019;25:3599-607. [PMID: 31612821 DOI: 10.2174/1381612825666191014163923] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
391 Hassan Q, Ahmadi S, Kerman K. Recent Advances in Monitoring Cell Behavior Using Cell-Based Impedance Spectroscopy. Micromachines (Basel) 2020;11:E590. [PMID: 32545753 DOI: 10.3390/mi11060590] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
392 Najmi Z, Kumar A, Scalia AC, Cochis A, Obradovic B, Grassi FA, Leigheb M, Lamghari M, Loinaz I, Gracia R, Rimondini L. Evaluation of Nisin and LL-37 Antimicrobial Peptides as Tool to Preserve Articular Cartilage Healing in a Septic Environment. Front Bioeng Biotechnol 2020;8:561. [PMID: 32596225 DOI: 10.3389/fbioe.2020.00561] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
393 Lau A, So HC. Turning genome-wide association study findings into opportunities for drug repositioning. Comput Struct Biotechnol J 2020;18:1639-50. [PMID: 32670504 DOI: 10.1016/j.csbj.2020.06.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
394 Srisongkram T, Weerapreeyakul N, Thumanu K. Evaluation of Melanoma (SK-MEL-2) Cell Growth between Three-Dimensional (3D) and Two-Dimensional (2D) Cell Cultures with Fourier Transform Infrared (FTIR) Microspectroscopy. Int J Mol Sci 2020;21:E4141. [PMID: 32531986 DOI: 10.3390/ijms21114141] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
395 Zurina IM, Gorkun AA, Dzhussoeva EV, Kolokoltsova TD, Markov DD, Kosheleva NV, Morozov SG, Saburina IN. Human Melanocyte-Derived Spheroids: A Precise Test System for Drug Screening and a Multicellular Unit for Tissue Engineering. Front Bioeng Biotechnol 2020;8:540. [PMID: 32582665 DOI: 10.3389/fbioe.2020.00540] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
396 Wardwell-Swanson J, Suzuki M, Dowell KG, Bieri M, Thoma EC, Agarkova I, Chiovaro F, Strebel S, Buschmann N, Greve F, Frey O. A Framework for Optimizing High-Content Imaging of 3D Models for Drug Discovery. SLAS Discov 2020;25:709-22. [PMID: 32484408 DOI: 10.1177/2472555220929291] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
397 Mapanao AK, Voliani V. Three-dimensional tumor models: Promoting breakthroughs in nanotheranostics translational research. Applied Materials Today 2020;19:100552. [DOI: 10.1016/j.apmt.2019.100552] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
398 Zhou X, Luo Z, Baidya A, Kim HJ, Wang C, Jiang X, Qu M, Zhu J, Ren L, Vajhadin F, Tebon P, Zhang N, Xue Y, Feng Y, Xue C, Chen Y, Lee K, Lee J, Zhang S, Xu C, Ashammakhi N, Ahadian S, Dokmeci MR, Gu Z, Sun W, Khademhosseini A. Biodegradable β-Cyclodextrin Conjugated Gelatin Methacryloyl Microneedle for Delivery of Water-Insoluble Drug. Adv Healthc Mater 2020;9:e2000527. [PMID: 32364331 DOI: 10.1002/adhm.202000527] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 15.0] [Reference Citation Analysis]
399 Nasr S, Rady M, Sebak A, Gomaa I, Fayad W, Gaafary ME, Abdel-Kader M, Syrovets T, Simmet T. A Naturally Derived Carrier for Photodynamic Treatment of Squamous Cell Carcinoma: In Vitro and In Vivo Models. Pharmaceutics 2020;12:E494. [PMID: 32485800 DOI: 10.3390/pharmaceutics12060494] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
400 Brovold M, Keller D, Soker S. Differential fibrotic phenotypes of hepatic stellate cells within 3D liver organoids. Biotechnol Bioeng 2020;117:2516-26. [PMID: 32391915 DOI: 10.1002/bit.27379] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
401 Han TU, Sam R, Sidransky E. Small Molecule Chaperones for the Treatment of Gaucher Disease and GBA1-Associated Parkinson Disease. Front Cell Dev Biol 2020;8:271. [PMID: 32509770 DOI: 10.3389/fcell.2020.00271] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
402 Shanti A, Samara B, Abdullah A, Hallfors N, Accoto D, Sapudom J, Alatoom A, Teo J, Danti S, Stefanini C. Multi-Compartment 3D-Cultured Organ-on-a-Chip: Towards a Biomimetic Lymph Node for Drug Development. Pharmaceutics 2020;12:E464. [PMID: 32438634 DOI: 10.3390/pharmaceutics12050464] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
403 Brodwolf R, Volz-Rakebrand P, Stellmacher J, Wolff C, Unbehauen M, Haag R, Schäfer-Korting M, Zoschke C, Alexiev U. Faster, sharper, more precise: Automated Cluster-FLIM in preclinical testing directly identifies the intracellular fate of theranostics in live cells and tissue. Theranostics 2020;10:6322-36. [PMID: 32483455 DOI: 10.7150/thno.42581] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
404 Balion Z, Cėpla V, Svirskiene N, Svirskis G, Druceikaitė K, Inokaitis H, Rusteikaitė J, Masilionis I, Stankevičienė G, Jelinskas T, Ulčinas A, Samanta A, Valiokas R, Jekabsone A. Cerebellar Cells Self-Assemble into Functional Organoids on Synthetic, Chemically Crosslinked ECM-Mimicking Peptide Hydrogels. Biomolecules 2020;10:754. [DOI: 10.3390/biom10050754] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
405 Lee YH, Pang SW, Revai Lechtich E, Shah K, Simon SE, Ponnusamy S, Narayanan R, Poh CL, Tan KO. Tricistronic expression of MOAP-1, Bax and RASSF1A in cancer cells enhances chemo-sensitization that requires BH3L domain of MOAP-1. J Cancer Res Clin Oncol 2020;146:1751-64. [DOI: 10.1007/s00432-020-03231-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
406 Borzouyan Dastjerdi M, Amini A, Nazari M, Cheng C, Benson V, Gholami A, Ghasemi Y. Novel versatile 3D bio-scaffold made of natural biocompatible hagfish exudate for tissue growth and organoid modeling. Int J Biol Macromol 2020;158:894-902. [PMID: 32387614 DOI: 10.1016/j.ijbiomac.2020.05.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
407 Yang Z, Xu H, Zhao X. Designer Self-Assembling Peptide Hydrogels to Engineer 3D Cell Microenvironments for Cell Constructs Formation and Precise Oncology Remodeling in Ovarian Cancer. Adv Sci (Weinh) 2020;7:1903718. [PMID: 32382486 DOI: 10.1002/advs.201903718] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 23.5] [Reference Citation Analysis]
408 Kocherova I, Kempisty B, Hutchings G, Moncrieff L, Dompe C, Janowicz K, Petitte J, Shibli JA, Mozdziak P. Cell-based approaches in drug development – a concise review. Medical Journal of Cell Biology 2020;8:44-9. [DOI: 10.2478/acb-2020-0005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
409 Chinta MS, desJardins-Park HE, Wan DC, Longaker MT. "Tissues in a Dish": A Review of Organoids in Plastic Surgery. Plast Reconstr Surg Glob Open 2020;8:e2787. [PMID: 32440447 DOI: 10.1097/GOX.0000000000002787] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
410 Duarte Campos DF, Lindsay CD, Roth JG, LeSavage BL, Seymour AJ, Krajina BA, Ribeiro R, Costa PF, Blaeser A, Heilshorn SC. Bioprinting Cell- and Spheroid-Laden Protein-Engineered Hydrogels as Tissue-on-Chip Platforms. Front Bioeng Biotechnol 2020;8:374. [PMID: 32411691 DOI: 10.3389/fbioe.2020.00374] [Cited by in Crossref: 12] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
411 Santi M, Mapanao AK, Cassano D, Vlamidis Y, Cappello V, Voliani V. Endogenously-Activated Ultrasmall-in-Nano Therapeutics: Assessment on 3D Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2020;12:E1063. [PMID: 32344838 DOI: 10.3390/cancers12051063] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
412 Park SB, Koh B, Jung WH, Choi KJ, Na YJ, Yoo HM, Lee S, Kang D, Lee D, Kim KY. Development of a three‐dimensional in vitro co‐culture model to increase drug selectivity for humans. Diabetes Obes Metab 2020;22:1302-15. [DOI: 10.1111/dom.14033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
413 Hwang HH, You S, Ma X, Kwe L, Victorine G, Lawrence N, Wan X, Shen H, Zhu W, Chen S. High throughput direct 3D bioprinting in multiwell plates. Biofabrication 2020. [PMID: 32299077 DOI: 10.1088/1758-5090/ab89ca] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
414 Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020;21:1968-94. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Cited by in Crossref: 68] [Cited by in F6Publishing: 128] [Article Influence: 34.0] [Reference Citation Analysis]
415 Kwon S, Lee D, Gopal S, Ku A, Moon H, Dordick JS. Three‐dimensional in vitro cell culture devices using patient‐derived cells for high‐throughput screening of drug combinations. Med Devices Sens 2020;3. [DOI: 10.1002/mds3.10067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
416 Monteiro CF, Santos SC, Custódio CA, Mano JF. Human Platelet Lysates-Based Hydrogels: A Novel Personalized 3D Platform for Spheroid Invasion Assessment. Adv Sci (Weinh) 2020;7:1902398. [PMID: 32274296 DOI: 10.1002/advs.201902398] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
417 Cortés-hernández LE, Eslami-s Z, Alix-panabières C. Circulating tumor cell as the functional aspect of liquid biopsy to understand the metastatic cascade in solid cancer. Molecular Aspects of Medicine 2020;72:100816. [DOI: 10.1016/j.mam.2019.07.008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 37] [Article Influence: 13.5] [Reference Citation Analysis]
418 Eppler HB, Jewell CM. Biomaterials as Tools to Decode Immunity. Adv Mater 2020;32:e1903367. [PMID: 31782844 DOI: 10.1002/adma.201903367] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
419 Sun YJ, Hsu CH, Ling TY, Liu L, Lin TC, Jakfar S, Young IC, Lin FH. The preparation of cell-containing microbubble scaffolds to mimic alveoli structure as a 3D drug-screening system for lung cancer. Biofabrication 2020;12:025031. [PMID: 32084662 DOI: 10.1088/1758-5090/ab78ee] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
420 Choi UY, Lee JJ, Park A, Zhu W, Lee HR, Choi YJ, Yoo JS, Yu C, Feng P, Gao SJ, Chen S, Eoh H, Jung JU. Oncogenic human herpesvirus hijacks proline metabolism for tumorigenesis. Proc Natl Acad Sci U S A 2020;117:8083-93. [PMID: 32213586 DOI: 10.1073/pnas.1918607117] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 13.5] [Reference Citation Analysis]
421 Jensen C, Teng Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front Mol Biosci. 2020;7:33. [PMID: 32211418 DOI: 10.3389/fmolb.2020.00033] [Cited by in Crossref: 103] [Cited by in F6Publishing: 267] [Article Influence: 51.5] [Reference Citation Analysis]
422 Ozturk MS, Lee VK, Zou H, Friedel RH, Intes X, Dai G. High-resolution tomographic analysis of in vitro 3D glioblastoma tumor model under long-term drug treatment. Sci Adv 2020;6:eaay7513. [PMID: 32181351 DOI: 10.1126/sciadv.aay7513] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
423 Klimovich P, Rubina K, Sysoeva V, Semina E. Three-Dimensional Model of Dorsal Root Ganglion Explant as a Method of Studying Neurotrophic Factors in Regenerative Medicine. Biomedicines 2020;8:E49. [PMID: 32138155 DOI: 10.3390/biomedicines8030049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
424 Kozlova N, Grossman JE, Iwanicki MP, Muranen T. The Interplay of the Extracellular Matrix and Stromal Cells as a Drug Target in Stroma-Rich Cancers. Trends in Pharmacological Sciences 2020;41:183-98. [DOI: 10.1016/j.tips.2020.01.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
425 Jokinen M, Pittois K, van den Akker S, Gutschoven I, Assmuth T, Metz T, Lehtilä H, Alanne P. Multiphase matrix of silica, culture medium and air for 3D mammalian cell culture. Cytotechnology 2020;72:271-82. [PMID: 32072348 DOI: 10.1007/s10616-020-00376-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
426 Yao X, Dani V, Dani C. Human Pluripotent Stem Cells: A Relevant Model to Identify Pathways Governing Thermogenic Adipocyte Generation. Front Endocrinol (Lausanne) 2019;10:932. [PMID: 32038489 DOI: 10.3389/fendo.2019.00932] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
427 Augustine R, Alhussain H, Hasan A, Badie Ahmed M, C Yalcin H, Al Moustafa AE. A novel in ovo model to study cancer metastasis using chicken embryos and GFP expressing cancer cells. Bosn J Basic Med Sci 2020;20:140-8. [PMID: 31336058 DOI: 10.17305/bjbms.2019.4372] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
428 Avendano A, Chang JJ, Cortes-Medina MG, Seibel AJ, Admasu BR, Boutelle CM, Bushman AR, Garg AA, DeShetler CM, Cole SL, Song JW. Integrated Biophysical Characterization of Fibrillar Collagen-Based Hydrogels. ACS Biomater Sci Eng 2020;6:1408-17. [PMID: 32292818 DOI: 10.1021/acsbiomaterials.9b01873] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
429 Pasula RR, Kuniyil A, Lim S. Molecular Entrapment in Thermophilic Ferritin for Nanoformulation in Photodynamic Therapy. Adv Therap 2020;3:1900172. [DOI: 10.1002/adtp.201900172] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
430 Breyner NM, Hecht M, Nitz N, Rose E, Carvalho JL. In vitro models for investigation of the host-parasite interface - possible applications in acute Chagas disease. Acta Trop 2020;202:105262. [PMID: 31706861 DOI: 10.1016/j.actatropica.2019.105262] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
431 Felgueiras J, Ribeiro R, Brevini TAL, Costa PF. State-of-the-art in reproductive bench science: Hurdles and new technological solutions. Theriogenology 2020;150:34-40. [PMID: 32088039 DOI: 10.1016/j.theriogenology.2020.01.067] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
432 Koszła O, Targowska-Duda KM, Kędzierska E, Kaczor AA. In Vitro and In Vivo Models for the Investigation of Potential Drugs Against Schizophrenia. Biomolecules 2020;10:E160. [PMID: 31963851 DOI: 10.3390/biom10010160] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
433 Stewart TA, Davis FM. A Primary Cell and Organoid Platform for Evaluating Pharmacological Responses in Mammary Epithelial Cells. ACS Pharmacol Transl Sci 2020;3:63-75. [PMID: 32259089 DOI: 10.1021/acsptsci.9b00090] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
434 Colombo R, Paolillo M, Papetti A. A new millifluidic-based gastrointestinal platform to evaluate the effect of simulated dietary methylglyoxal intakes. Food Funct 2019;10:4330-8. [PMID: 31273366 DOI: 10.1039/c9fo00332k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
435 De Lazzari F, Sandrelli F, Whitworth AJ, Bisaglia M. Antioxidant Therapy in Parkinson's Disease: Insights from Drosophila melanogaster. Antioxidants (Basel) 2020;9:E52. [PMID: 31936094 DOI: 10.3390/antiox9010052] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
436 Lam D, Enright HA, Peters SK, Moya ML, Soscia DA, Cadena J, Alvarado JA, Kulp KS, Wheeler EK, Fischer NO. Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures. Journal of Neuroscience Methods 2020;329:108460. [DOI: 10.1016/j.jneumeth.2019.108460] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
437 Sousa AR, Martins-Cruz C, Oliveira MB, Mano JF. One-Step Rapid Fabrication of Cell-Only Living Fibers. Adv Mater 2020;32:e1906305. [PMID: 31769556 DOI: 10.1002/adma.201906305] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
438 Keller F, Rudolf R, Hafner M. Towards optimized breast cancer 3D spheroid mono- and co-culture models for pharmacological research and screening. JCB 2019;5:89-101. [DOI: 10.3233/jcb-199001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
439 Tuomainen K, Al-Samadi A, Potdar S, Turunen L, Turunen M, Karhemo PR, Bergman P, Risteli M, Åström P, Tiikkaja R, Grenman R, Wennerberg K, Monni O, Salo T. Human Tumor-Derived Matrix Improves the Predictability of Head and Neck Cancer Drug Testing. Cancers (Basel) 2019;12:E92. [PMID: 31905951 DOI: 10.3390/cancers12010092] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
440 Finnson KW, Almadani Y, Philip A. Non-canonical (non-SMAD2/3) TGF-β signaling in fibrosis: Mechanisms and targets. Semin Cell Dev Biol 2020;101:115-22. [PMID: 31883994 DOI: 10.1016/j.semcdb.2019.11.013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 40] [Article Influence: 7.7] [Reference Citation Analysis]
441 Zhao L, Xiu J, Liu Y, Zhang T, Pan W, Zheng X, Zhang X. A 3D Printed Hanging Drop Dripper for Tumor Spheroids Analysis Without Recovery. Sci Rep 2019;9:19717. [PMID: 31873199 DOI: 10.1038/s41598-019-56241-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
442 Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. Biochim Biophys Acta Biomembr 2020;1862:183158. [PMID: 31863725 DOI: 10.1016/j.bbamem.2019.183158] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
443 Cembran A, Bruggeman KF, Williams RJ, Parish CL, Nisbet DR. Biomimetic Materials and Their Utility in Modeling the 3-Dimensional Neural Environment. iScience 2020;23:100788. [PMID: 31954980 DOI: 10.1016/j.isci.2019.100788] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
444 Becceneri AB, Fuzer AM, Popolin CP, Cazal CM, Domingues VC, Fernandes JB, Vieira PC, Cominetti MR. Acetylation of cedrelone increases its cytotoxic activity and reverts the malignant phenotype of breast cancer cells in 3D culture. Chem Biol Interact 2020;316:108920. [PMID: 31857088 DOI: 10.1016/j.cbi.2019.108920] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
445 Fan D, Staufer U, Accardo A. Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications.Bioengineering (Basel). 2019;6. [PMID: 31847117 DOI: 10.3390/bioengineering6040113] [Cited by in Crossref: 19] [Cited by in F6Publishing: 29] [Article Influence: 6.3] [Reference Citation Analysis]
446 Ryu NE, Lee SH, Park H. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells 2019;8:E1620. [PMID: 31842346 DOI: 10.3390/cells8121620] [Cited by in Crossref: 68] [Cited by in F6Publishing: 124] [Article Influence: 22.7] [Reference Citation Analysis]
447 Mazumdar C, Driggers EM, Turka LA. The Untapped Opportunity and Challenge of Immunometabolism: A New Paradigm for Drug Discovery. Cell Metab 2020;31:26-34. [PMID: 31839485 DOI: 10.1016/j.cmet.2019.11.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
448 Phi LTH, Wijaya YT, Sari IN, Kim KS, Yang YG, Lee MW, Kwon HY. 20(R)-Ginsenoside Rg3 Influences Cancer Stem Cell Properties and the Epithelial-Mesenchymal Transition in Colorectal Cancer via the SNAIL Signaling Axis. Onco Targets Ther 2019;12:10885-95. [PMID: 31849492 DOI: 10.2147/OTT.S219063] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
449 Gurcan C, Taheri H, Bianco A, Delogu LG, Yilmazer A. A closer look at the genotoxicity of graphene based materials. J Phys Mater 2019;3:014007. [DOI: 10.1088/2515-7639/ab5844] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
450 Perut F, Roncuzzi L, Baldini N. The Emerging Roles of Extracellular Vesicles in Osteosarcoma. Front Oncol 2019;9:1342. [PMID: 31850225 DOI: 10.3389/fonc.2019.01342] [Cited by in Crossref: 14] [Cited by in F6Publishing: 21] [Article Influence: 4.7] [Reference Citation Analysis]
451 Privat-Maldonado A, Bengtson C, Razzokov J, Smits E, Bogaerts A. Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments. Cancers (Basel) 2019;11:E1920. [PMID: 31810265 DOI: 10.3390/cancers11121920] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]
452 Lewicki J, Bergman J, Kerins C, Hermanson O. Optimization of 3D bioprinting of human neuroblastoma cells using sodium alginate hydrogel. Bioprinting 2019;16:e00053. [DOI: 10.1016/j.bprint.2019.e00053] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
453 Lovecchio J, Pannella M, Giardino L, Calzà L, Giordano E. A dynamic culture platform enhances the efficiency of the 3D HUVEC-based tube formation assay. Biotechnol Bioeng 2020;117:789-97. [PMID: 31736057 DOI: 10.1002/bit.27227] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
454 Liu W, Deng C, Godoy-Parejo C, Zhang Y, Chen G. Developments in cell culture systems for human pluripotent stem cells. World J Stem Cells 2019; 11(11): 968-981 [PMID: 31768223 DOI: 10.4252/wjsc.v11.i11.968] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
455 Lunov O, Uzhytchak M, Smolková B, Lunova M, Jirsa M, Dempsey NM, Dias AL, Bonfim M, Hof M, Jurkiewicz P, Petrenko Y, Kubinová Š, Dejneka A. Remote Actuation of Apoptosis in Liver Cancer Cells via Magneto-Mechanical Modulation of Iron Oxide Nanoparticles. Cancers (Basel) 2019;11:E1873. [PMID: 31779223 DOI: 10.3390/cancers11121873] [Cited by in Crossref: 15] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
456 Singh A, Tayalia P. Three-dimensional cryogel matrix for spheroid formation and anti-cancer drug screening. J Biomed Mater Res A 2020;108:365-76. [PMID: 31654478 DOI: 10.1002/jbm.a.36822] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
457 Matsui T, Miyamoto K, Yamanaka K, Okai Y, Kaushik EP, Harada K, Wagoner M, Shinozawa T. Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicology and Applied Pharmacology 2019;383:114761. [DOI: 10.1016/j.taap.2019.114761] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
458 Zaderer V, Hermann M, Lass-Flörl C, Posch W, Wilflingseder D. Turning the World Upside-Down in Cellulose for Improved Culturing and Imaging of Respiratory Challenges within a Human 3D Model. Cells 2019;8:E1292. [PMID: 31640299 DOI: 10.3390/cells8101292] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
459 Li D, Jeong M, Oren E, Yu T, Qiu T. A Helical Microrobot with an Optimized Propeller-Shape for Propulsion in Viscoelastic Biological Media. Robotics 2019;8:87. [DOI: 10.3390/robotics8040087] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
460 Yakavets I, Jenard S, Francois A, Maklygina Y, Loschenov V, Lassalle HP, Dolivet G, Bezdetnaya L. Stroma-Rich Co-Culture Multicellular Tumor Spheroids as a Tool for Photoactive Drugs Screening. J Clin Med 2019;8:E1686. [PMID: 31618880 DOI: 10.3390/jcm8101686] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
461 Zhang Z, Chen L, Wang Y, Zhang T, Chen Y, Yoon E. Label-Free Estimation of Therapeutic Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis. Anal Chem 2019;91:14093-100. [DOI: 10.1021/acs.analchem.9b03896] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
462 Fernández D, Guerra M, Lisoni JG, Hoffmann T, Araya-Hermosilla R, Shibue T, Nishide H, Moreno-Villoslada I, Flores ME. Fibrous Materials Made of Poly(ε-caprolactone)/Poly(ethylene oxide)-b-Poly(ε-caprolactone) Blends Support Neural Stem Cells Differentiation. Polymers (Basel) 2019;11:E1621. [PMID: 31597231 DOI: 10.3390/polym11101621] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
463 Bresciani G, Hofland LJ, Dogan F, Giamas G, Gagliano T, Zatelli MC. Evaluation of Spheroid 3D Culture Methods to Study a Pancreatic Neuroendocrine Neoplasm Cell Line. Front Endocrinol (Lausanne) 2019;10:682. [PMID: 31636608 DOI: 10.3389/fendo.2019.00682] [Cited by in Crossref: 14] [Cited by in F6Publishing: 21] [Article Influence: 4.7] [Reference Citation Analysis]
464 Breathwaite EK, Weaver JR, Murchison AC, Treadwell ML, Odanga JJ, Lee JB. Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology. Biomed Mater 2019;14:065010. [PMID: 31491773 DOI: 10.1088/1748-605X/ab4243] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
465 Lee JE, Lee J, Kim JH, Cho N, Lee SH, Park SB, Koh B, Kang D, Kim S, Yoo HM. Characterization of the Anti-Cancer Activity of the Probiotic Bacterium Lactobacillus fermentum Using 2D vs. 3D Culture in Colorectal Cancer Cells. Biomolecules 2019;9:E557. [PMID: 31581581 DOI: 10.3390/biom9100557] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
466 Hondrich TJJ, Deußen O, Grannemann C, Brinkmann D, Offenhäusser A. Improvements of Microcontact Printing for Micropatterned Cell Growth by Contrast Enhancement. Micromachines (Basel) 2019;10:E659. [PMID: 31574944 DOI: 10.3390/mi10100659] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
467 Arshad U, Sutton PA, Ashford MB, Treacher KE, Liptrott NJ, Rannard SP, Goldring CE, Owen A. Critical considerations for targeting colorectal liver metastases with nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1588. [PMID: 31566913 DOI: 10.1002/wnan.1588] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
468 Swaminathan S, Cranston AN, Clyne AM. A Three-Dimensional In Vitro Coculture Model to Quantify Breast Epithelial Cell Adhesion to Endothelial Cells. Tissue Eng Part C Methods 2019;25:609-18. [PMID: 31441384 DOI: 10.1089/ten.TEC.2019.0122] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
469 Patankar M, Eskelinen S, Tuomisto A, Mäkinen MJ, Karttunen TJ. KRAS and BRAF mutations induce anoikis resistance and characteristic 3D phenotypes in Caco‑2 cells. Mol Med Rep 2019;20:4634-44. [PMID: 31545494 DOI: 10.3892/mmr.2019.10693] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
470 Marrazzo P, Angeloni C, Hrelia S. Combined Treatment with Three Natural Antioxidants Enhances Neuroprotection in a SH-SY5Y 3D Culture Model. Antioxidants (Basel) 2019;8:E420. [PMID: 31547034 DOI: 10.3390/antiox8100420] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
471 Alföldi R, Balog JÁ, Faragó N, Halmai M, Kotogány E, Neuperger P, Nagy LI, Fehér LZ, Szebeni GJ, Puskás LG. Single Cell Mass Cytometry of Non-Small Cell Lung Cancer Cells Reveals Complexity of In vivo And Three-Dimensional Models over the Petri-dish. Cells 2019;8:E1093. [PMID: 31527554 DOI: 10.3390/cells8091093] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
472 Lee SY, Doh I, Lee DW. A High Throughput Apoptosis Assay using 3D Cultured Cells. Molecules 2019;24:E3362. [PMID: 31527418 DOI: 10.3390/molecules24183362] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
473 Pickup KE, Pardow F, Carbonell-Caballero J, Lioutas A, Villanueva-Cañas JL, Wright RHG, Beato M. Expression of Oncogenic Drivers in 3D Cell Culture Depends on Nuclear ATP Synthesis by NUDT5. Cancers (Basel) 2019;11:E1337. [PMID: 31510016 DOI: 10.3390/cancers11091337] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
474 Lechanteur A, Evrard B, Piel G. Assessment of the feasibility to develop a fast and easy reproducible 3D bronchial model growing at the air-liquid interface: Which critical culture parameters must be controlled? Eur J Pharm Biopharm 2019;144:2-10. [PMID: 31493512 DOI: 10.1016/j.ejpb.2019.09.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
475 LaBarge W, Morales A, Pretorius D, Kahn-Krell AM, Kannappan R, Zhang J. Scaffold-Free Bioprinter Utilizing Layer-By-Layer Printing of Cellular Spheroids. Micromachines (Basel) 2019;10:E570. [PMID: 31470604 DOI: 10.3390/mi10090570] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
476 Ayuso JM, Vitek R, Swick AD, Skala MC, Wisinski KB, Kimple RJ, Lambert PF, Beebe DJ. Effects of culture method on response to EGFR therapy in head and neck squamous cell carcinoma cells. Sci Rep 2019;9:12480. [PMID: 31462653 DOI: 10.1038/s41598-019-48764-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
477 Adams J, Taha I, Naba A. Exploring the extracellular matrix in health and disease using proteomics. Essays in Biochemistry 2019;63:417-32. [DOI: 10.1042/ebc20190001] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 14.0] [Reference Citation Analysis]
478 Onaciu A, Munteanu RA, Moldovan AI, Moldovan CS, Berindan-Neagoe I. Hydrogels Based Drug Delivery Synthesis, Characterization and Administration. Pharmaceutics 2019;11:E432. [PMID: 31450869 DOI: 10.3390/pharmaceutics11090432] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
479 Sitia L, Catelani T, Guarnieri D, Pompa PP. In Vitro Blood-Brain Barrier Models for Nanomedicine: Particle-Specific Effects and Methodological Drawbacks. ACS Appl Bio Mater 2019;2:3279-89. [PMID: 35030770 DOI: 10.1021/acsabm.9b00305] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
480 de Mello CPP, Rumsey J, Slaughter V, Hickman JJ. A human-on-a-chip approach to tackling rare diseases. Drug Discov Today 2019;24:2139-51. [PMID: 31412288 DOI: 10.1016/j.drudis.2019.08.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
481 Xin X, Yang S. A Dual Fluorescent 3-D Multicellular Coculture of Breast Cancer MCF-7 and Fibroblast NIH-3T3 Cells for High Throughput Cancer Drug Screening. Biochemical Engineering Journal 2019;148:152-61. [DOI: 10.1016/j.bej.2019.05.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
482 Zhai J, Yi S, Jia Y, Mak P, Martins RP. Cell-based drug screening on microfluidics. TrAC Trends in Analytical Chemistry 2019;117:231-41. [DOI: 10.1016/j.trac.2019.05.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
483 Cartledge Wolf DM, Langhans SA. Moving Myeloid Leukemia Drug Discovery Into the Third Dimension. Front Pediatr 2019;7:314. [PMID: 31417884 DOI: 10.3389/fped.2019.00314] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
484 Martin ME, Reaves DK, Jeffcoat B, Enders JR, Costantini LM, Yeyeodu ST, Botta D, Kavanagh TJ, Fleming JM. Silver nanoparticles alter epithelial basement membrane integrity, cell adhesion molecule expression, and TGF-β1 secretion. Nanomedicine 2019;21:102070. [PMID: 31351238 DOI: 10.1016/j.nano.2019.102070] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
485 Dai W, Liu P, Guo S, Liu Z, Wang M, Shi J, Tong B, Liu T, Cai Z, Dong Y. Triphenylquinoline (TPQ)-Based Dual-State Emissive Probe for Cell Imaging in Multicellular Tumor Spheroids. ACS Appl Bio Mater 2019;2:3686-92. [DOI: 10.1021/acsabm.9b00596] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
486 Burgos-Panadero R, Lucantoni F, Gamero-Sandemetrio E, Cruz-Merino L, Álvaro T, Noguera R. The tumour microenvironment as an integrated framework to understand cancer biology. Cancer Lett 2019;461:112-22. [PMID: 31325528 DOI: 10.1016/j.canlet.2019.07.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 34] [Article Influence: 7.7] [Reference Citation Analysis]
487 Brooks EA, Gencoglu MF, Corbett DC, Stevens KR, Peyton SR. An omentum-inspired 3D PEG hydrogel for identifying ECM-drivers of drug resistant ovarian cancer. APL Bioeng 2019;3:026106. [PMID: 31263798 DOI: 10.1063/1.5091713] [Cited by in Crossref: 17] [Cited by in F6Publishing: 26] [Article Influence: 5.7] [Reference Citation Analysis]
488 Mina SG, Alaybeyoglu B, Murphy WL, Thomson JA, Stokes CL, Cirit M. Assessment of Drug-Induced Toxicity Biomarkers in the Brain Microphysiological System (MPS) Using Targeted and Untargeted Molecular Profiling. Front Big Data 2019;2:23. [PMID: 33693346 DOI: 10.3389/fdata.2019.00023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
489 Romo‐morales A, Aladowicz E, Blagg J, Gatz SA, Shipley JM. Catalytic inhibition of KDM1A in Ewing sarcoma is insufficient as a therapeutic strategy. Pediatr Blood Cancer 2019;66. [DOI: 10.1002/pbc.27888] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
490 Augustyniak J, Bertero A, Coccini T, Baderna D, Buzanska L, Caloni F. Organoids are promising tools for species-specific in vitro toxicological studies. J Appl Toxicol 2019;39:1610-22. [PMID: 31168795 DOI: 10.1002/jat.3815] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
491 Lee C, Abelseth E, de la Vega L, Willerth S. Bioprinting a novel glioblastoma tumor model using a fibrin-based bioink for drug screening. Materials Today Chemistry 2019;12:78-84. [DOI: 10.1016/j.mtchem.2018.12.005] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 14.0] [Reference Citation Analysis]
492 Kondo J, Inoue M. Application of Cancer Organoid Model for Drug Screening and Personalized Therapy. Cells 2019;8:E470. [PMID: 31108870 DOI: 10.3390/cells8050470] [Cited by in Crossref: 54] [Cited by in F6Publishing: 76] [Article Influence: 18.0] [Reference Citation Analysis]
493 Zoetemelk M, Rausch M, Colin DJ, Dormond O, Nowak-Sliwinska P. Short-term 3D culture systems of various complexity for treatment optimization of colorectal carcinoma. Sci Rep 2019;9:7103. [PMID: 31068603 DOI: 10.1038/s41598-019-42836-0] [Cited by in Crossref: 39] [Cited by in F6Publishing: 47] [Article Influence: 13.0] [Reference Citation Analysis]
494 Popova AA, Tronser T, Demir K, Haitz P, Kuodyte K, Starkuviene V, Wajda P, Levkin PA. Facile One Step Formation and Screening of Tumor Spheroids Using Droplet-Microarray Platform. Small 2019;15:e1901299. [PMID: 31058427 DOI: 10.1002/smll.201901299] [Cited by in Crossref: 19] [Cited by in F6Publishing: 29] [Article Influence: 6.3] [Reference Citation Analysis]
495 Haddrick M, Simpson PB. Organ-on-a-chip technology: turning its potential for clinical benefit into reality. Drug Discovery Today 2019;24:1217-23. [DOI: 10.1016/j.drudis.2019.03.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
496 Worthington P, Drake KM, Li Z, Napper AD, Pochan DJ, Langhans SA. Implementation of a High-Throughput Pilot Screen in Peptide Hydrogel-Based Three-Dimensional Cell Cultures. SLAS Discov 2019;24:714-23. [PMID: 31039326 DOI: 10.1177/2472555219844570] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
497 Maitra U, Ciesla L. Using Drosophila as a platform for drug discovery from natural products in Parkinson's disease. Medchemcomm 2019;10:867-79. [PMID: 31303984 DOI: 10.1039/c9md00099b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
498 Natale A, Vanmol K, Arslan A, Van Vlierberghe S, Dubruel P, Van Erps J, Thienpont H, Buzgo M, Boeckmans J, De Kock J, Vanhaecke T, Rogiers V, Rodrigues RM. Technological advancements for the development of stem cell-based models for hepatotoxicity testing. Arch Toxicol 2019;93:1789-805. [PMID: 31037322 DOI: 10.1007/s00204-019-02465-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
499 Forsythe S, Mehta N, Devarasetty M, Sivakumar H, Gmeiner W, Soker S, Votanopoulos K, Skardal A. Development of a Colorectal Cancer 3D Micro-tumor Construct Platform From Cell Lines and Patient Tumor Biospecimens for Standard-of-Care and Experimental Drug Screening. Ann Biomed Eng 2020;48:940-52. [PMID: 31020445 DOI: 10.1007/s10439-019-02269-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
500 Xiao Y, Kim D, Dura B, Zhang K, Yan R, Li H, Han E, Ip J, Zou P, Liu J, Chen AT, Vortmeyer AO, Zhou J, Fan R. Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculature-on-a-Chip System Correlates with Tumor Heterogeneity and Subtypes. Adv Sci (Weinh) 2019;6:1801531. [PMID: 31016107 DOI: 10.1002/advs.201801531] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 12.3] [Reference Citation Analysis]
501 Zang R, Xin X, Zhang F, Li D, Yang ST. An engineered mouse embryonic stem cell model with survivin as a molecular marker and EGFP as the reporter for high throughput screening of embryotoxic chemicals in vitro. Biotechnol Bioeng 2019;116:1656-68. [PMID: 30934112 DOI: 10.1002/bit.26977] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
502 Chantarasriwong O, Milcarek AT, Morales TH, Settle AL, Rezende CO, Althufairi BD, Theodoraki MA, Alpaugh ML, Theodorakis EA. Synthesis, structure-activity relationship and in vitro pharmacodynamics of A-ring modified caged xanthones in a preclinical model of inflammatory breast cancer. European Journal of Medicinal Chemistry 2019;168:405-13. [DOI: 10.1016/j.ejmech.2019.02.047] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
503 De Grandis RA, Santos PWDSD, Oliveira KMD, Machado ART, Aissa AF, Batista AA, Antunes LMG, Pavan FR. Novel lawsone-containing ruthenium(II) complexes: Synthesis, characterization and anticancer activity on 2D and 3D spheroid models of prostate cancer cells. Bioorganic Chemistry 2019;85:455-68. [DOI: 10.1016/j.bioorg.2019.02.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
504 Srinivasaiah S, Musumeci G, Mohan T, Castrogiovanni P, Absenger-novak M, Zefferer U, Mostofi S, Bonyadi Rad E, Grün NG, Weinberg AM, Schäfer U. A 300 μm Organotypic Bone Slice Culture Model for Temporal Investigation of Endochondral Osteogenesis. Tissue Engineering Part C: Methods 2019;25:197-212. [DOI: 10.1089/ten.tec.2018.0368] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
505 Flampouri E, Imar S, OConnell K, Singh B. Spheroid-3D and Monolayer-2D Intestinal Electrochemical Biosensor for Toxicity/Viability Testing: Applications in Drug Screening, Food Safety, and Environmental Pollutant Analysis. ACS Sens 2019;4:660-9. [PMID: 30698007 DOI: 10.1021/acssensors.8b01490] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
506 Mi S, Liu Z, Du Z, Yi X, Sun W. Three‐dimensional microfluidic tumor–macrophage system for breast cancer cell invasion. Biotechnology and Bioengineering 2019;116:1731-41. [DOI: 10.1002/bit.26961] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
507 Sun S, Guo H, Wang J, Dai J. Hepatotoxicity of perfluorooctanoic acid and two emerging alternatives based on a 3D spheroid model. Environmental Pollution 2019;246:955-62. [DOI: 10.1016/j.envpol.2018.12.065] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 4.7] [Reference Citation Analysis]
508 Tarasova E, Naumenko E, Rozhina E, Akhatova F, Fakhrullin R. Cytocompatibility and uptake of polycations-modified halloysite clay nanotubes. Applied Clay Science 2019;169:21-30. [DOI: 10.1016/j.clay.2018.12.016] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 15.7] [Reference Citation Analysis]
509 Booij TH, Price LS, Danen EHJ. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis. SLAS Discov 2019;24:615-27. [PMID: 30817892 DOI: 10.1177/2472555219830087] [Cited by in Crossref: 21] [Cited by in F6Publishing: 37] [Article Influence: 7.0] [Reference Citation Analysis]
510 Han H, Asano S, Hsu S. Cellular Spheroids of Mesenchymal Stem Cells and Their Perspectives in Future Healthcare. Applied Sciences 2019;9:627. [DOI: 10.3390/app9040627] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
511 Sasaki JI, Katata C, Abe GL, Matsumoto T, Imazato S. Fabricating large-scale three-dimensional constructs with living cells by processing with syringe needles. J Biomed Mater Res A 2019;107:904-9. [PMID: 30663860 DOI: 10.1002/jbm.a.36613] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
512 Kim J, Koo BK, Yoon KJ. Modeling Host-Virus Interactions in Viral Infectious Diseases Using Stem-Cell-Derived Systems and CRISPR/Cas9 Technology. Viruses 2019;11:E124. [PMID: 30704043 DOI: 10.3390/v11020124] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
513 Zanoni M, Pignatta S, Arienti C, Bonafè M, Tesei A. Anticancer drug discovery using multicellular tumor spheroid models. Expert Opin Drug Discov 2019;14:289-301. [PMID: 30689452 DOI: 10.1080/17460441.2019.1570129] [Cited by in Crossref: 32] [Cited by in F6Publishing: 40] [Article Influence: 10.7] [Reference Citation Analysis]
514 Xin X, Wu Y, Zang R, Yang S. A fluorescent 3D cell culture assay for high throughput screening of cancer drugs down-regulating survivin. Journal of Biotechnology 2019;289:80-7. [DOI: 10.1016/j.jbiotec.2018.11.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
515 Cummins KA, Crampton AL, Wood DK. A High-Throughput Workflow to Study Remodeling of Extracellular Matrix-Based Microtissues. Tissue Eng Part C Methods 2019;25:25-36. [PMID: 30430922 DOI: 10.1089/ten.TEC.2018.0290] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
516 Lim W, Park S. A Microfluidic Spheroid Culture Device with a Concentration Gradient Generator for High-Throughput Screening of Drug Efficacy. Molecules 2018;23:E3355. [PMID: 30567363 DOI: 10.3390/molecules23123355] [Cited by in Crossref: 23] [Cited by in F6Publishing: 41] [Article Influence: 5.8] [Reference Citation Analysis]
517 Laszlo V, Valko Z, Ozsvar J, Kovacs I, Garay T, Hoda MA, Klikovits T, Stockhammer P, Aigner C, Gröger M, Klepetko W, Berger W, Grusch M, Tovari J, Waizenegger IC, Dome B, Hegedus B. The FAK inhibitor BI 853520 inhibits spheroid formation and orthotopic tumor growth in malignant pleural mesothelioma. J Mol Med (Berl) 2019;97:231-42. [PMID: 30539198 DOI: 10.1007/s00109-018-1725-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
518 Hamilton G, Rath B. Applicability of tumor spheroids for in vitro chemosensitivity assays. Expert Opinion on Drug Metabolism & Toxicology 2019;15:15-23. [DOI: 10.1080/17425255.2019.1554055] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
519 Braham MV, Deshantri AK, Minnema MC, Öner FC, Schiffelers RM, Fens MH, Alblas J. Liposomal drug delivery in an in vitro 3D bone marrow model for multiple myeloma. Int J Nanomedicine 2018;13:8105-18. [PMID: 30555229 DOI: 10.2147/IJN.S184262] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
520 Triantafillu UL, Park S, Kim Y. Fluid Shear Stress Induces Drug Resistance to Doxorubicin and Paclitaxel in the Breast Cancer Cell Line MCF7. Adv Therap 2019;2:1800112. [DOI: 10.1002/adtp.201800112] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
521 Lee JM, Park DY, Yang L, Kim EJ, Ahrberg CD, Lee KB, Chung BG. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep 2018;8:17145. [PMID: 30464248 DOI: 10.1038/s41598-018-35216-7] [Cited by in Crossref: 38] [Cited by in F6Publishing: 61] [Article Influence: 9.5] [Reference Citation Analysis]
522 Monteiro CF, Custódio CA, Mano JF. Three-Dimensional Osteosarcoma Models for Advancing Drug Discovery and Development. Adv Therap 2019;2:1800108. [DOI: 10.1002/adtp.201800108] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
523 Satpathy A, Datta P, Wu Y, Ayan B, Bayram E, Ozbolat IT. Developments with 3D bioprinting for novel drug discovery. Expert Opin Drug Discov 2018;13:1115-29. [PMID: 30384781 DOI: 10.1080/17460441.2018.1542427] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
524 Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K. Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Front Bioeng Biotechnol 2018;6:154. [PMID: 30430109 DOI: 10.3389/fbioe.2018.00154] [Cited by in Crossref: 41] [Cited by in F6Publishing: 53] [Article Influence: 10.3] [Reference Citation Analysis]
525 Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs: NUNES et al.. Biotechnology and Bioengineering 2019;116:206-26. [DOI: 10.1002/bit.26845] [Cited by in Crossref: 196] [Cited by in F6Publishing: 255] [Article Influence: 49.0] [Reference Citation Analysis]
526 Shi D, Mi G, Wang M, Webster TJ. In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials 2019;198:228-49. [PMID: 30384974 DOI: 10.1016/j.biomaterials.2018.10.030] [Cited by in Crossref: 14] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
527 Su YL, Hu SH. Functional Nanoparticles for Tumor Penetration of Therapeutics. Pharmaceutics 2018;10:E193. [PMID: 30340364 DOI: 10.3390/pharmaceutics10040193] [Cited by in Crossref: 33] [Cited by in F6Publishing: 40] [Article Influence: 8.3] [Reference Citation Analysis]
528 Nunes AS, Costa EC, Barros AS, de Melo-Diogo D, Correia IJ. Establishment of 2D Cell Cultures Derived From 3D MCF-7 Spheroids Displaying a Doxorubicin Resistant Profile. Biotechnol J 2019;14:e1800268. [PMID: 30242980 DOI: 10.1002/biot.201800268] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
529 Ponce de León-rodríguez MDC, Guyot J, Laurent-babot C. Intestinal in vitro cell culture models and their potential to study the effect of food components on intestinal inflammation. Critical Reviews in Food Science and Nutrition 2019;59:3648-66. [DOI: 10.1080/10408398.2018.1506734] [Cited by in Crossref: 19] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
530 Calitz C, Hamman JH, Viljoen AM, Fey SJ, Wrzesinski K, Gouws C. Toxicity and anti-prolific properties of Xysmalobium undulatum water extract during short-term exposure to two-dimensional and three-dimensional spheroid cell cultures. Toxicology Mechanisms and Methods 2018;28:641-52. [DOI: 10.1080/15376516.2018.1485805] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
531 Strauss BE, Silva GRO, de Luna Vieira I, Cerqueira OLD, Del Valle PR, Medrano RFV, Mendonça SA. Perspectives for cancer immunotherapy mediated by p19Arf plus interferon-beta gene transfer. Clinics (Sao Paulo) 2018;73:e479s. [PMID: 30208166 DOI: 10.6061/clinics/2018/e479s] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
532 Watters KM, Bajwa P, Kenny HA. Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment. Cancers (Basel) 2018;10:E265. [PMID: 30096959 DOI: 10.3390/cancers10080265] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
533 Cattin S, Ramont L, Rüegg C. Characterization and In Vivo Validation of a Three-Dimensional Multi-Cellular Culture Model to Study Heterotypic Interactions in Colorectal Cancer Cell Growth, Invasion and Metastasis. Front Bioeng Biotechnol 2018;6:97. [PMID: 30065926 DOI: 10.3389/fbioe.2018.00097] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
534 Richard PU, Craciun I, Gaitzsch J, Weiner L, Palivan CG. Delivery of ROS Generating Anthraquinones Using Reduction-Responsive Peptide-Based Nanoparticles. Helv Chim Acta 2018;101:e1800064. [DOI: 10.1002/hlca.201800064] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
535 Yoshikawa C, Hoshiba T, Sakakibara K, Tsujii Y. Flocculation of Cells by Cellulose Nanofibers Modified with Concentrated Polymer Brushes. ACS Appl Nano Mater 2018;1:1450-5. [DOI: 10.1021/acsanm.8b00172] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
536 Li P, Yu H, Liu N, Wang F, Lee G, Wang Y, Liu L, Li WJ. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip. Biomater Sci 2018;6:1371-8. [DOI: 10.1039/c7bm01153a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
537 [DOI: 10.1101/2021.01.31.428996] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
538 [DOI: 10.1101/2021.02.18.431759] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
539 [DOI: 10.1101/828145] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Reference Citation Analysis]