BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rajasekaran S, Rajaguru P, Sudhakar Gandhi PS. MicroRNAs as potential targets for progressive pulmonary fibrosis. Front Pharmacol 2015;6:254. [PMID: 26594173 DOI: 10.3389/fphar.2015.00254] [Cited by in Crossref: 61] [Cited by in F6Publishing: 70] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Jeong MH, Han H, Lagares D, Im H. Recent Advances in Molecular Diagnosis of Pulmonary Fibrosis for Precision Medicine. ACS Pharmacol Transl Sci . [DOI: 10.1021/acsptsci.2c00028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Deng W, Zhang Y, Fang P, Shi H, Yang S. Silencing lncRNA Snhg6 mitigates bleomycin-induced pulmonary fibrosis in mice via miR-26a-5p/TGF-β1-smads axis. Environ Toxicol 2022. [PMID: 35785413 DOI: 10.1002/tox.23603] [Reference Citation Analysis]
3 Fu M, Yin W, Zhang W, Zhu Y, Ni H, Gong L. MicroRNA-15a inhibits hepatic stellate cell activation and proliferation via targeting SRY-box transcription factor 9. Bioengineered 2022;13:13011-20. [PMID: 35611752 DOI: 10.1080/21655979.2022.2068895] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wang S, Liu M, Li X, Zhang J, Wang F, Zhang C, Roden A, Ryu JH, Warrington KJ, Sun J, Matteson EL, Tschumperlin DJ, Vassallo R. Canonical and noncanonical regulatory roles for JAK2 in the pathogenesis of rheumatoid arthritis-associated interstitial lung disease and idiopathic pulmonary fibrosis. FASEB J 2022;36:e22336. [PMID: 35522243 DOI: 10.1096/fj.202101436R] [Reference Citation Analysis]
5 Santos-álvarez JC, Velázquez-enríquez JM, García-carrillo R, Rodríguez-beas C, Ramírez-hernández AA, Reyes-jiménez E, González-garcía K, López-martínez A, Pérez-campos Mayoral L, Aguilar-ruiz SR, Romero-tlalolini MDLÁ, Torres-aguilar H, Castro-sánchez L, Arellanes-robledo J, Vásquez-garzón VR, Baltiérrez-hoyos R. miRNAs Contained in Extracellular Vesicles Cargo Contribute to the Progression of Idiopathic Pulmonary Fibrosis: An In Vitro Aproach. Cells 2022;11:1112. [DOI: 10.3390/cells11071112] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Qin R, Zhao Q, Han B, Zhu H, Peng C, Zhan G, Huang W. Indole-Based Small Molecules as Potential Therapeutic Agents for the Treatment of Fibrosis. Front Pharmacol 2022;13:845892. [DOI: 10.3389/fphar.2022.845892] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Yang T, Wang J, Zhao J, Liu Y. Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review). Int J Mol Med 2022;49:37. [PMID: 35088880 DOI: 10.3892/ijmm.2022.5092] [Reference Citation Analysis]
8 Zhang QH, Huang HZ, Qiu M, Wu ZF, Xin ZC, Cai XF, Shang Q, Lin JZ, Zhang DK, Han L. Traditional Uses, Pharmacological Effects, and Molecular Mechanisms of Licorice in Potential Therapy of COVID-19. Front Pharmacol 2021;12:719758. [PMID: 34899289 DOI: 10.3389/fphar.2021.719758] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
9 Niu H, Qu A, Guan C. Suppression of MGAT3 expression and the epithelial–mesenchymal transition of lung cancer cells by miR-188-5p. Biomedical Journal 2021;44:678-85. [DOI: 10.1016/j.bj.2020.05.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Perera UE, Derseh HB, Dewage SNV, Stent A, Wijayarathna R, Snibson KJ. Evaluation of microRNA expression in a sheep model for lung fibrosis. BMC Genomics 2021;22:827. [PMID: 34789159 DOI: 10.1186/s12864-021-08073-4] [Reference Citation Analysis]
11 Gupta SK, Srivastava M, Minocha R, Akash A, Dangwal S, Dandekar T. Alveolar Regeneration in COVID-19 Patients: A Network Perspective. Int J Mol Sci 2021;22:11279. [PMID: 34681944 DOI: 10.3390/ijms222011279] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Kawami M, Takenaka S, Kadekaru Y, Akai M, Konaka T, Yumoto R, Takano M. Evaluation on epithelial-mesenchymal state and microRNAs focusing on isolated alveolar epithelial cells from bleomycin injured rat lung. Toxicology 2021;461:152903. [PMID: 34425168 DOI: 10.1016/j.tox.2021.152903] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Li C, Liu JH, Su J, Lin WJ, Zhao JQ, Zhang ZH, Wu Q. LncRNA XIST knockdown alleviates LPS-induced acute lung injury by inactivation of XIST/miR-132-3p/MAPK14 pathway : XIST promotes ALI via miR-132-3p/MAPK14 axis. Mol Cell Biochem 2021. [PMID: 34346000 DOI: 10.1007/s11010-021-04234-x] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Sisto M, Ribatti D, Lisi S. ADAM 17 and Epithelial-to-Mesenchymal Transition: The Evolving Story and Its Link to Fibrosis and Cancer. J Clin Med 2021;10:3373. [PMID: 34362154 DOI: 10.3390/jcm10153373] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
15 Usman K, Hsieh A, Hackett TL. The Role of miRNAs in Extracellular Matrix Repair and Chronic Fibrotic Lung Diseases. Cells 2021;10:1706. [PMID: 34359876 DOI: 10.3390/cells10071706] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
16 Huang G, Zhang J, Qing G, Liu D, Wang X, Chen Y, Wu Y, Li Y, Guo S. Downregulation of miR‑483‑5p inhibits TGF‑β1‑induced EMT by targeting RhoGDI1 in pulmonary fibrosis. Mol Med Rep 2021;24:538. [PMID: 34080651 DOI: 10.3892/mmr.2021.12177] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Hamidi SH, Kadamboor Veethil S, Hamidi SH. Role of pirfenidone in TGF-β pathways and other inflammatory pathways in acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection: a theoretical perspective. Pharmacol Rep 2021;73:712-27. [PMID: 33880743 DOI: 10.1007/s43440-021-00255-x] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
18 Li J, Zhang X, Wang T, Li J, Su Q, Zhong C, Chen Z, Liang Y. The MIR155 host gene/microRNA-627/HMGB1/NF-κB loop modulates fibroblast proliferation and extracellular matrix deposition. Life Sci 2021;269:119085. [PMID: 33482190 DOI: 10.1016/j.lfs.2021.119085] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 P KM, Sivashanmugam K, Kandasamy M, Subbiah R, Ravikumar V. Repurposing of histone deacetylase inhibitors: A promising strategy to combat pulmonary fibrosis promoted by TGF-β signalling in COVID-19 survivors. Life Sci 2021;266:118883. [PMID: 33316266 DOI: 10.1016/j.lfs.2020.118883] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
20 Ou SC, Bai KJ, Cheng WH, Chen JY, Lin CH, Wen HC, Chen BC. TGF-β Induced CTGF Expression in Human Lung Epithelial Cells through ERK, ADAM17, RSK1, and C/EBPβ Pathways. Int J Mol Sci 2020;21:E9084. [PMID: 33260349 DOI: 10.3390/ijms21239084] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
21 Mansour SM, El-Abhar HS, Soubh AA. MiR-200a inversely correlates with Hedgehog and TGF-β canonical/non-canonical trajectories to orchestrate the anti-fibrotic effect of Tadalafil in a bleomycin-induced pulmonary fibrosis model. Inflammopharmacology 2021;29:167-82. [PMID: 32914382 DOI: 10.1007/s10787-020-00748-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
22 Yang K, Shen Z, Zou Y, Gao K. Rosmarinic acid inhibits migration, invasion, and p38/AP-1 signaling via miR-1225-5p in colorectal cancer cells. J Recept Signal Transduct Res 2021;41:284-93. [PMID: 32838607 DOI: 10.1080/10799893.2020.1808674] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
23 Sun B, Xu S, Yan Y, Li Y, Li H, Zheng G, Dong T, Bai J. miR-205 Suppresses Pulmonary Fibrosis by Targeting GATA3 Through Inhibition of Endoplasmic Reticulum Stress. Curr Pharm Biotechnol 2020;21:720-6. [PMID: 31820686 DOI: 10.2174/1389201021666191210115614] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Fu J, Wu B, Zhong S, Deng W, Lin F. miR-29a-3p suppresses hepatic fibrosis pathogenesis by modulating hepatic stellate cell proliferation via targeting PIK3R3 gene expression. Biochem Biophys Res Commun 2020;529:922-9. [PMID: 32819600 DOI: 10.1016/j.bbrc.2020.06.102] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
25 Croston TL, Lemons AR, Barnes MA, Goldsmith WT, Orandle MS, Nayak AP, Germolec DR, Green BJ, Beezhold DH. Inhalation of Stachybotrys chartarum Fragments Induces Pulmonary Arterial Remodeling. Am J Respir Cell Mol Biol 2020;62:563-76. [PMID: 31671270 DOI: 10.1165/rcmb.2019-0221OC] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
26 Zhang K, Yang R, Chen J, Qi E, Zhou S, Wang Y, Fu Q, Chen R, Fang X. Let-7i-5p Regulation of Cell Morphology and Migration Through Distinct Signaling Pathways in Normal and Pathogenic Urethral Fibroblasts. Front Bioeng Biotechnol 2020;8:428. [PMID: 32478052 DOI: 10.3389/fbioe.2020.00428] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
27 Gao X, Xu D, Li S, Wei Z, Li S, Cai W, Mao N, Jin F, Li Y, Yi X, Liu H, Xu H, Yang F. Pulmonary Silicosis Alters MicroRNA Expression in Rat Lung and miR-411-3p Exerts Anti-fibrotic Effects by Inhibiting MRTF-A/SRF Signaling. Mol Ther Nucleic Acids 2020;20:851-65. [PMID: 32464548 DOI: 10.1016/j.omtn.2020.05.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
28 Min H, Ma D, Zou W, Wu Y, Ding Y, Zhu C, Lin A, Song S, Liang Q, Chen B, Zhang B, Wan Y, Ye M, Pan Y, Wen Y, Yi L, Gao Q. FLCN-regulated miRNAs suppressed reparative response in cells and pulmonary lesions of Birt-Hogg-Dubé syndrome. Thorax 2020;75:476-85. [PMID: 32184379 DOI: 10.1136/thoraxjnl-2019-213225] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
29 Cho SJ, Lee M, Stout-Delgado HW, Moon JS. DROSHA-Dependent miRNA and AIM2 Inflammasome Activation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020;21:E1668. [PMID: 32121297 DOI: 10.3390/ijms21051668] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
30 Wu G, Xie B, Lu C, Chen C, Zhou J, Deng Z. microRNA-30a attenuates TGF-β1-induced activation of pulmonary fibroblast cell by targeting FAP-α. J Cell Mol Med 2020;24:3745-50. [PMID: 31991519 DOI: 10.1111/jcmm.15020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
31 Lai M, Slaughter G. Label-Free MicroRNA Optical Biosensors. Nanomaterials (Basel) 2019;9:E1573. [PMID: 31698769 DOI: 10.3390/nano9111573] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
32 Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in Pulmonary Complications: Implications in Lung Health and Diseases. Mol Ther Nucleic Acids 2019;18:413-31. [PMID: 31655261 DOI: 10.1016/j.omtn.2019.09.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
33 Wei P, Xie Y, Abel PW, Huang Y, Ma Q, Li L, Hao J, Wolff DW, Wei T, Tu Y. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis 2019;10:670. [PMID: 31511493 DOI: 10.1038/s41419-019-1873-x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 45] [Article Influence: 7.3] [Reference Citation Analysis]
34 Cho SJ, Hong KS, Jeong JH, Lee M, Choi AMK, Stout-Delgado HW, Moon JS. DROSHA-Dependent AIM2 Inflammasome Activation Contributes to Lung Inflammation during Idiopathic Pulmonary Fibrosis. Cells 2019;8:E938. [PMID: 31434287 DOI: 10.3390/cells8080938] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
35 Srivastava SP, Hedayat AF, Kanasaki K, Goodwin JE. microRNA Crosstalk Influences Epithelial-to-Mesenchymal, Endothelial-to-Mesenchymal, and Macrophage-to-Mesenchymal Transitions in the Kidney. Front Pharmacol 2019;10:904. [PMID: 31474862 DOI: 10.3389/fphar.2019.00904] [Cited by in Crossref: 31] [Cited by in F6Publishing: 51] [Article Influence: 10.3] [Reference Citation Analysis]
36 Ideozu JE, Rangaraj V, Abdala-Valencia H, Zhang X, Kandpal M, Sala MA, Davuluri RV, Levy H. Transcriptional consequences of impaired immune cell responses induced by cystic fibrosis plasma characterized via dual RNA sequencing. BMC Med Genomics 2019;12:66. [PMID: 31118097 DOI: 10.1186/s12920-019-0529-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
37 Nie X, Chen Y, Tan J, Dai Y, Mao W, Qin G, Ye S, Sun J, Yang Z, Chen J. MicroRNA-221-3p promotes pulmonary artery smooth muscle cells proliferation by targeting AXIN2 during pulmonary arterial hypertension. Vascular Pharmacology 2019;116:24-35. [DOI: 10.1016/j.vph.2017.07.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 32] [Article Influence: 7.7] [Reference Citation Analysis]
38 Tsai MJ, Chang WA, Liao SH, Chang KF, Sheu CC, Kuo PL. The Effects of Epigallocatechin Gallate (EGCG) on Pulmonary Fibroblasts of Idiopathic Pulmonary Fibrosis (IPF)-A Next-Generation Sequencing and Bioinformatic Approach. Int J Mol Sci 2019;20:E1958. [PMID: 31013581 DOI: 10.3390/ijms20081958] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
39 Eissa MG, Artlett CM. The MicroRNA miR-155 Is Essential in Fibrosis. Noncoding RNA 2019;5:E23. [PMID: 30871125 DOI: 10.3390/ncrna5010023] [Cited by in Crossref: 11] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
40 Yang L, Liu X, Zhang N, Chen L, Xu J, Tang W. Investigation of circular RNAs and related genes in pulmonary fibrosis based on bioinformatics analysis. J Cell Biochem 2019. [PMID: 30767300 DOI: 10.1002/jcb.28380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
41 Li J, Kong X, Jiang S, Liao W, Zhang Z, Song J, Liang Y, Zhang W. miR-627/HMGB1/NF-κB regulatory loop modulates TGF-β1-induced pulmonary fibrosis. J Cell Biochem 2019;120:2983-93. [PMID: 30536600 DOI: 10.1002/jcb.27038] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
42 Suntres ZE. Exploring the potential benefit of natural product extracts in paraquat toxicity. Fitoterapia 2018;131:160-7. [PMID: 30359726 DOI: 10.1016/j.fitote.2018.10.026] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
43 Pattarayan D, Thimmulappa RK, Ravikumar V, Rajasekaran S. Diagnostic Potential of Extracellular MicroRNA in Respiratory Diseases. Clin Rev Allergy Immunol 2018;54:480-92. [PMID: 27677501 DOI: 10.1007/s12016-016-8589-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
44 Wang L, Huang W, Zhang L, Chen Q, Zhao H. Molecular pathogenesis involved in human idiopathic pulmonary fibrosis based on an integrated microRNA‑mRNA interaction network. Mol Med Rep 2018;18:4365-73. [PMID: 30221703 DOI: 10.3892/mmr.2018.9456] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
45 Naito Y, Hamada-Tsutsumi S, Yamamoto Y, Kogure A, Yoshioka Y, Watashi K, Ochiya T, Tanaka Y. Screening of microRNAs for a repressor of hepatitis B virus replication. Oncotarget 2018;9:29857-68. [PMID: 30042818 DOI: 10.18632/oncotarget.25557] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
46 Zhou J, Xu Q, Zhang Q, Wang Z, Guan S. A novel molecular mechanism of microRNA‐21 inducing pulmonary fibrosis and human pulmonary fibroblast extracellular matrix through transforming growth factor β1–mediated SMADs activation. J Cell Biochem 2018;119:7834-43. [DOI: 10.1002/jcb.27185] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
47 Pattarayan D, Sivanantham A, Bethunaickan R, Palanichamy R, Rajasekaran S. Tannic acid modulates fibroblast proliferation and differentiation in response to pro‐fibrotic stimuli. J Cell Biochem 2018;119:6732-42. [DOI: 10.1002/jcb.26866] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
48 Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018;129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 7.3] [Reference Citation Analysis]
49 Ding X, Yu C, Liu Y, Yan S, Li W, Wang D, Sun L, Han Y, Li M, Zhang S, Yun F, Zhao H, Li Y. Chronic obstructive sleep apnea accelerates pulmonary remodeling via TGF-β/miR-185/CoLA1 signaling in a canine model. Oncotarget 2016;7:57545-55. [PMID: 27542203 DOI: 10.18632/oncotarget.11296] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
50 Zhao S, Xiao X, Sun S, Li D, Wang W, Fu Y, Fan F. MicroRNA-30d/JAG1 axis modulates pulmonary fibrosis through Notch signaling pathway. Pathol Res Pract 2018;214:1315-23. [PMID: 30029934 DOI: 10.1016/j.prp.2018.02.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
51 Ling R, Zhou Y, Zhou L, Dai D, Wu D, Mi L, Mao C, Chen D. Lin28/microRNA-let-7a promotes metastasis under circumstances of hyperactive Wnt signaling in esophageal squamous cell carcinoma. Mol Med Rep 2018;17:5265-71. [PMID: 29393461 DOI: 10.3892/mmr.2018.8548] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.3] [Reference Citation Analysis]
52 Salamo O, Mortaz E, Mirsaeidi M. Noncoding RNAs: New Players in Pulmonary Medicine and Sarcoidosis. Am J Respir Cell Mol Biol 2018;58:147-56. [DOI: 10.1165/rcmb.2017-0196tr] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
53 Kang H. Role of MicroRNAs in TGF-β Signaling Pathway-Mediated Pulmonary Fibrosis. Int J Mol Sci 2017;18:E2527. [PMID: 29186838 DOI: 10.3390/ijms18122527] [Cited by in Crossref: 40] [Cited by in F6Publishing: 46] [Article Influence: 8.0] [Reference Citation Analysis]
54 Pattarayan D, Sivanantham A, Krishnaswami V, Loganathan L, Palanichamy R, Natesan S, Muthusamy K, Rajasekaran S. Tannic acid attenuates TGF-β1-induced epithelial-to-mesenchymal transition by effectively intervening TGF-β signaling in lung epithelial cells. J Cell Physiol 2018;233:2513-25. [DOI: 10.1002/jcp.26127] [Cited by in Crossref: 33] [Cited by in F6Publishing: 39] [Article Influence: 6.6] [Reference Citation Analysis]
55 Xiong Y, Zhang J, Shi L, Ning Y, Zhu Y, Chen S, Yang M, Chen J, Zhou GW, Li Q. NOGO-B promotes EMT in lung fibrosis via MMP14 mediates free TGF-beta1 formation. Oncotarget 2017;8:71024-37. [PMID: 29050340 DOI: 10.18632/oncotarget.20297] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
56 Li LC, Xu L, Hu Y, Cui WJ, Cui WH, Zhou WC, Kan LD. Astragaloside IV Improves Bleomycin-Induced Pulmonary Fibrosis in Rats by Attenuating Extracellular Matrix Deposition. Front Pharmacol 2017;8:513. [PMID: 28848434 DOI: 10.3389/fphar.2017.00513] [Cited by in Crossref: 18] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
57 Zhu Y, Wang J, Meng X, Xie H, Tan J, Guo X, Han P, Wang R. A positive feedback loop promotes HIF-1α stability through miR-210-mediated suppression of RUNX3 in paraquat-induced EMT. J Cell Mol Med 2017;21:3529-39. [PMID: 28699703 DOI: 10.1111/jcmm.13264] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
58 Fan L, Yu X, Huang Z, Zheng S, Zhou Y, Lv H, Zeng Y, Xu JF, Zhu X, Yi X. Analysis of Microarray-Identified Genes and MicroRNAs Associated with Idiopathic Pulmonary Fibrosis. Mediators Inflamm 2017;2017:1804240. [PMID: 28588348 DOI: 10.1155/2017/1804240] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
59 Takano M, Nekomoto C, Kawami M, Yumoto R. Role of miR-34a in TGF-β1- and Drug-Induced Epithelial-Mesenchymal Transition in Alveolar Type II Epithelial Cells. J Pharm Sci 2017;106:2868-72. [PMID: 28408209 DOI: 10.1016/j.xphs.2017.04.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
60 Li LC, Kan LD. Traditional Chinese medicine for pulmonary fibrosis therapy: Progress and future prospects. J Ethnopharmacol 2017;198:45-63. [PMID: 28038955 DOI: 10.1016/j.jep.2016.12.042] [Cited by in Crossref: 46] [Cited by in F6Publishing: 60] [Article Influence: 7.7] [Reference Citation Analysis]
61 Ge L, Habiel DM, Hansbro PM, Kim RY, Gharib SA, Edelman JD, Königshoff M, Parimon T, Brauer R, Huang Y, Allen J, Jiang D, Kurkciyan AA, Mizuno T, Stripp BR, Noble PW, Hogaboam CM, Chen P. miR-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways. JCI Insight 2016;1:e90301. [PMID: 27942594 DOI: 10.1172/jci.insight.90301] [Cited by in Crossref: 20] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
62 Matsushima S, Ishiyama J. MicroRNA-29c regulates apoptosis sensitivity via modulation of the cell-surface death receptor, Fas, in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2016;311:L1050-61. [PMID: 27765762 DOI: 10.1152/ajplung.00252.2016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
63 Cai Q, Wang T, Yang WJ, Fen X. Protective mechanisms of microRNA-27a against oxygen-glucose deprivation-induced injuries in hippocampal neurons. Neural Regen Res 2016;11:1285-92. [PMID: 27651777 DOI: 10.4103/1673-5374.189194] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
64 Kishore A, Žižková V, Kocourková L, Petrkova J, Bouros E, Nunes H, Loštáková V, Müller-Quernheim J, Zissel G, Kolek V, Bouros D, Valeyre D, Petrek M. Association Study for 26 Candidate Loci in Idiopathic Pulmonary Fibrosis Patients from Four European Populations. Front Immunol 2016;7:274. [PMID: 27462317 DOI: 10.3389/fimmu.2016.00274] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
65 Zhang L, Zhao S, Yuan L, Wu H, Jiang H, Luo G. Placental Growth Factor Triggers Epithelial-to-Mesenchymal Transition-like Changes in Rat Type II Alveolar Epithelial Cells: Activation of Nuclear Factor κB Signalling Pathway. Basic Clin Pharmacol Toxicol 2016;119:498-504. [DOI: 10.1111/bcpt.12616] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
66 Nair GB, Matela A, Kurbanov D, Raghu G. Newer developments in idiopathic pulmonary fibrosis in the era of anti-fibrotic medications. Expert Rev Respir Med 2016;10:699-711. [PMID: 27094006 DOI: 10.1080/17476348.2016.1177461] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
67 Freund-Michel V, Muller B, Marthan R, Savineau JP, Guibert C. Expression and role of connexin-based gap junctions in pulmonary inflammatory diseases. Pharmacol Ther 2016;164:105-19. [PMID: 27126473 DOI: 10.1016/j.pharmthera.2016.04.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
68 Froidure A, Joannes A, Mailleux AA, Crestani B. New targets in idiopathic pulmonary fibrosis: from inflammation and immunity to remodeling and repair. Expert Opinion on Orphan Drugs 2016;4:511-20. [DOI: 10.1517/21678707.2016.1171140] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
69 Rajasekaran S, Pattarayan D, Rajaguru P, Sudhakar Gandhi PS, Thimmulappa RK. MicroRNA Regulation of Acute Lung Injury and Acute Respiratory Distress Syndrome. J Cell Physiol 2016;231:2097-106. [PMID: 26790856 DOI: 10.1002/jcp.25316] [Cited by in Crossref: 66] [Cited by in F6Publishing: 73] [Article Influence: 11.0] [Reference Citation Analysis]
70 Liu X, Wang F, Tian L, Wang T, Zhang W, Li B, Bai Y. MicroRNA-520b affects the proliferation of human glioblastoma cells by directly targeting cyclin D1. Tumor Biol 2016;37:7921-8. [DOI: 10.1007/s13277-015-4666-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]