BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chiara F, Rasola A. GSK-3 and mitochondria in cancer cells. Front Oncol 2013;3:16. [PMID: 23386998 DOI: 10.3389/fonc.2013.00016] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 4.2] [Reference Citation Analysis]
Number Citing Articles
1 Martelli AM, Paganelli F, Evangelisti C, Chiarini F, Mccubrey JA. Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells 2022;11:1812. [DOI: 10.3390/cells11111812] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Kanwore K, Kanwore K, Adzika GK, Abiola AA, Guo X, Kambey PA, Xia Y, Gao D. Cancer Metabolism: The Role of Immune Cells Epigenetic Alteration in Tumorigenesis, Progression, and Metastasis of Glioma. Front Immunol 2022;13:831636. [PMID: 35392088 DOI: 10.3389/fimmu.2022.831636] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2021. [PMID: 34729791 DOI: 10.1002/med.21867] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
4 Gartz M, Beatka M, Prom MJ, Strande JL, Lawlor MW. Cardiomyocyte-produced miR-339-5p mediates pathology in Duchenne muscular dystrophy cardiomyopathy. Hum Mol Genet 2021:ddab199. [PMID: 34270708 DOI: 10.1093/hmg/ddab199] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in Cancer: A Prima Donna Playing Multiple Characters. Int J Mol Sci 2021;22:4716. [PMID: 33946854 DOI: 10.3390/ijms22094716] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 21.0] [Reference Citation Analysis]
6 Abrams SL, Akula SM, Meher AK, Steelman LS, Gizak A, Duda P, Rakus D, Martelli AM, Ratti S, Cocco L, Montalto G, Cervello M, Ruvolo P, Libra M, Falzone L, Candido S, McCubrey JA. GSK-3β Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutraceuticals. Cells 2021;10:816. [PMID: 33917370 DOI: 10.3390/cells10040816] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
7 Martelli AM, Evangelisti C, Paganelli F, Chiarini F, McCubrey JA. GSK-3: a multifaceted player in acute leukemias. Leukemia 2021;35:1829-42. [PMID: 33811246 DOI: 10.1038/s41375-021-01243-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
8 He R, Du S, Lei T, Xie X, Wang Y. Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review). Oncol Rep 2020;44:2373-85. [PMID: 33125126 DOI: 10.3892/or.2020.7817] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
9 Kellert M, Sárosi I, Rajaratnam R, Meggers E, Lönnecke P, Hey-Hawkins E. Ruthenacarborane-Phenanthroline Derivatives as Potential Metallodrugs. Molecules 2020;25:E2322. [PMID: 32429279 DOI: 10.3390/molecules25102322] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019;7:70. [PMID: 31131274 DOI: 10.3389/fcell.2019.00070] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 15.0] [Reference Citation Analysis]
11 Ramachandran A, Jaeschke H. Acetaminophen hepatotoxicity: A mitochondrial perspective. Adv Pharmacol 2019;85:195-219. [PMID: 31307587 DOI: 10.1016/bs.apha.2019.01.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
12 Chen Y, Zheng K, Chen Z, Feng H, Fang W, Huang Z. [ADAM17 knockdown increases sensitivity of SW480 cells to cetuximad]. Nan Fang Yi Ke Da Xue Xue Bao 2018;38:1366-71. [PMID: 30514687 DOI: 10.12122/j.issn.1673-4254.2018.11.15] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Cannino G, Ciscato F, Masgras I, Sánchez-Martín C, Rasola A. Metabolic Plasticity of Tumor Cell Mitochondria. Front Oncol 2018;8:333. [PMID: 30197878 DOI: 10.3389/fonc.2018.00333] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 15.5] [Reference Citation Analysis]
14 Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018;19:E2060. [PMID: 30011966 DOI: 10.3390/ijms19072060] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
15 Hedya SA, Safar MM, Bahgat AK. Cilostazol Mediated Nurr1 and Autophagy Enhancement: Neuroprotective Activity in Rat Rotenone PD Model. Mol Neurobiol 2018;55:7579-87. [DOI: 10.1007/s12035-018-0923-1] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
16 Yang Q, Wen L, Meng Z, Chen Y. Blockage of endoplasmic reticulum stress attenuates nilotinib-induced cardiotoxicity by inhibition of the Akt-GSK3β-Nox4 signaling. Eur J Pharmacol 2018;822:85-94. [PMID: 29355557 DOI: 10.1016/j.ejphar.2018.01.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
17 Jakobsson E, Argüello-Miranda O, Chiu SW, Fazal Z, Kruczek J, Nunez-Corrales S, Pandit S, Pritchet L. Towards a Unified Understanding of Lithium Action in Basic Biology and its Significance for Applied Biology. J Membr Biol 2017;250:587-604. [PMID: 29127487 DOI: 10.1007/s00232-017-9998-2] [Cited by in Crossref: 64] [Cited by in F6Publishing: 52] [Article Influence: 12.8] [Reference Citation Analysis]
18 Pan C, Liu N, Zhang P, Wu Q, Deng H, Xu F, Lian L, Liang Q, Hu Y, Zhu S, Tang Z. EGb761 Ameliorates Neuronal Apoptosis and Promotes Angiogenesis in Experimental Intracerebral Hemorrhage via RSK1/GSK3β Pathway. Mol Neurobiol 2018;55:1556-67. [PMID: 28185127 DOI: 10.1007/s12035-016-0363-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
19 Arrázola MS, Ramos-Fernández E, Cisternas P, Ordenes D, Inestrosa NC. Wnt Signaling Prevents the Aβ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons. PLoS One 2017;12:e0168840. [PMID: 28060833 DOI: 10.1371/journal.pone.0168840] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
20 Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. Eur Biophys J 2016;45:685-707. [PMID: 27289382 DOI: 10.1007/s00249-016-1143-0] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 5.7] [Reference Citation Analysis]
21 Golshani-Hebroni S. Mg(++) requirement for MtHK binding, and Mg(++) stabilization of mitochondrial membranes via activation of MtHK & MtCK and promotion of mitochondrial permeability transition pore closure: A hypothesis on mechanisms underlying Mg(++)'s antioxidant and cytoprotective effects. Gene 2016;581:1-13. [PMID: 26732303 DOI: 10.1016/j.gene.2015.12.046] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
22 Sundaresan NR, Bindu S, Pillai VB, Samant S, Pan Y, Huang JY, Gupta M, Nagalingam RS, Wolfgeher D, Verdin E, Gupta MP. SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 3β. Mol Cell Biol 2015;36:678-92. [PMID: 26667039 DOI: 10.1128/MCB.00586-15] [Cited by in Crossref: 120] [Cited by in F6Publishing: 128] [Article Influence: 17.1] [Reference Citation Analysis]
23 Zhang H, Sun J, Ye J, Ashraf U, Chen Z, Zhu B, He W, Xu Q, Wei Y, Chen H, Fu ZF, Liu R, Cao S. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response. J Proteome Res 2015;14:5157-68. [DOI: 10.1021/acs.jproteome.5b00424] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
24 Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015;95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Cited by in Crossref: 399] [Cited by in F6Publishing: 409] [Article Influence: 57.0] [Reference Citation Analysis]
25 Tsai HJ, Huang SS, Tsou MT, Wang HT, Chiu JH. Role of Opioid Receptors Signaling in Remote Electrostimulation--Induced Protection against Ischemia/Reperfusion Injury in Rat Hearts. PLoS One 2015;10:e0138108. [PMID: 26430750 DOI: 10.1371/journal.pone.0138108] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
26 Lantier L, Williams AS, Williams IM, Yang KK, Bracy DP, Goelzer M, James FD, Gius D, Wasserman DH. SIRT3 Is Crucial for Maintaining Skeletal Muscle Insulin Action and Protects Against Severe Insulin Resistance in High-Fat-Fed Mice. Diabetes 2015;64:3081-92. [PMID: 25948682 DOI: 10.2337/db14-1810] [Cited by in Crossref: 99] [Cited by in F6Publishing: 102] [Article Influence: 14.1] [Reference Citation Analysis]
27 Rasola A, Bernardi P. Reprint of "The mitochondrial permeability transition pore and its adaptive responses in tumor cells". Cell Calcium 2015;58:18-26. [PMID: 25828565 DOI: 10.1016/j.ceca.2015.03.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
28 Brenner C, Lemoine A. Mitochondrial Proteins (e.g., VDAC, Bcl-2, HK, ANT) as Major Control Points in Oncology. Front Oncol 2014;4:365. [PMID: 25566503 DOI: 10.3389/fonc.2014.00365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
29 Chen C, Zhang Q, Liu S, Lambrechts M, Qu Y, You Z. AZD5363 Inhibits Inflammatory Synergy between Interleukin-17 and Insulin/Insulin-Like Growth Factor 1. Front Oncol 2014;4:343. [PMID: 25520943 DOI: 10.3389/fonc.2014.00343] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
30 Bonora M, Pinton P. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol 2014;4:302. [PMID: 25478322 DOI: 10.3389/fonc.2014.00302] [Cited by in Crossref: 109] [Cited by in F6Publishing: 111] [Article Influence: 13.6] [Reference Citation Analysis]
31 Rasola A, Bernardi P. The mitochondrial permeability transition pore and its adaptive responses in tumor cells. Cell Calcium 2014;56:437-45. [PMID: 25454774 DOI: 10.1016/j.ceca.2014.10.003] [Cited by in Crossref: 70] [Cited by in F6Publishing: 71] [Article Influence: 8.8] [Reference Citation Analysis]
32 Szabo I, Zoratti M. Mitochondrial channels: ion fluxes and more. Physiol Rev 2014;94:519-608. [PMID: 24692355 DOI: 10.1152/physrev.00021.2013] [Cited by in Crossref: 232] [Cited by in F6Publishing: 237] [Article Influence: 29.0] [Reference Citation Analysis]
33 Shao S, Li S, Qin Y, Wang X, Yang Y, Bai H, Zhou L, Zhao C, Wang C. Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia. Int J Oncol 2014;44:1661-8. [PMID: 24585095 DOI: 10.3892/ijo.2014.2313] [Cited by in Crossref: 103] [Cited by in F6Publishing: 107] [Article Influence: 12.9] [Reference Citation Analysis]
34 Leanza L, Zoratti M, Gulbins E, Szabo I. Mitochondrial ion channels as oncological targets. Oncogene 2014;33:5569-81. [DOI: 10.1038/onc.2013.578] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 8.5] [Reference Citation Analysis]
35 Frezza C. The role of mitochondria in the oncogenic signal transduction. Int J Biochem Cell Biol 2014;48:11-7. [PMID: 24397955 DOI: 10.1016/j.biocel.2013.12.013] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.9] [Reference Citation Analysis]
36 Nagao T, Kurosu T, Umezawa Y, Nogami A, Oshikawa G, Tohda S, Yamamoto M, Miura O. Proliferation and survival signaling from both Jak2-V617F and Lyn involving GSK3 and mTOR/p70S6K/4EBP1 in PVTL-1 cell line newly established from acute myeloid leukemia transformed from polycythemia vera. PLoS One 2014;9:e84746. [PMID: 24404189 DOI: 10.1371/journal.pone.0084746] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
37 Ngamsiri P, Watcharasit P, Satayavivad J. Glycogen synthase kinase-3 (GSK3) controls deoxyglucose-induced mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells. Mitochondrion 2014;14:54-63. [PMID: 24316184 DOI: 10.1016/j.mito.2013.11.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
38 Tao L, Fan F, Liu Y, Li W, Zhang L, Ruan J, Shen C, Sheng X, Zhu Z, Wang A, Chen W, Huang S, Lu Y. Concerted suppression of STAT3 and GSK3β is involved in growth inhibition of non-small cell lung cancer by Xanthatin. PLoS One 2013;8:e81945. [PMID: 24312384 DOI: 10.1371/journal.pone.0081945] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
39 Leanza L, Biasutto L, Managò A, Gulbins E, Zoratti M, Szabò I. Intracellular ion channels and cancer. Front Physiol 2013;4:227. [PMID: 24027528 DOI: 10.3389/fphys.2013.00227] [Cited by in Crossref: 87] [Cited by in F6Publishing: 95] [Article Influence: 9.7] [Reference Citation Analysis]
40 Ge D, Dauchy RT, Liu S, Zhang Q, Mao L, Dauchy EM, Blask DE, Hill SM, Rowan BG, Brainard GC, Hanifin JP, Cecil KS, Xiong Z, Myers L, You Z. Insulin and IGF1 enhance IL-17-induced chemokine expression through a GSK3B-dependent mechanism: a new target for melatonin's anti-inflammatory action. J Pineal Res 2013;55:377-87. [PMID: 24033914 DOI: 10.1111/jpi.12084] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 3.4] [Reference Citation Analysis]
41 Takahashi-Yanaga F. Activator or inhibitor? GSK-3 as a new drug target. Biochem Pharmacol 2013;86:191-9. [PMID: 23643839 DOI: 10.1016/j.bcp.2013.04.022] [Cited by in Crossref: 133] [Cited by in F6Publishing: 126] [Article Influence: 14.8] [Reference Citation Analysis]