BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Orentas RJ, Yang JJ, Wen X, Wei JS, Mackall CL, Khan J. Identification of cell surface proteins as potential immunotherapy targets in 12 pediatric cancers. Front Oncol 2012;2:194. [PMID: 23251904 DOI: 10.3389/fonc.2012.00194] [Cited by in Crossref: 52] [Cited by in F6Publishing: 61] [Article Influence: 5.2] [Reference Citation Analysis]
Number Citing Articles
1 de Jong JM, Broekaart DWM, Bongaarts A, Mühlebner A, Mills JD, van Vliet EA, Aronica E. Altered Extracellular Matrix as an Alternative Risk Factor for Epileptogenicity in Brain Tumors. Biomedicines 2022;10:2475. [PMID: 36289737 DOI: 10.3390/biomedicines10102475] [Reference Citation Analysis]
2 Fuchs J, Bareesel S, Kroon C, Polyzou A, Eickholt BJ, Leondaritis G. Plasma membrane phospholipid phosphatase-related proteins as pleiotropic regulators of neuron growth and excitability. Front Mol Neurosci 2022;15:984655. [DOI: 10.3389/fnmol.2022.984655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Lv M, Liu Y, Liu W, Xing Y, Zhang S. Immunotherapy for Pediatric Acute Lymphoblastic Leukemia: Recent Advances and Future Perspectives. Front Immunol 2022;13:921894. [DOI: 10.3389/fimmu.2022.921894] [Reference Citation Analysis]
4 Chen G, Luo D, Zhong N, Li D, Zheng J, Liao H, Li Z, Lin X, Chen Q, Zhang C, Lu Y, Chan YT, Ren Q, Wang N, Feng Y. GPC2 Is a Potential Diagnostic, Immunological, and Prognostic Biomarker in Pan-Cancer. Front Immunol 2022;13:857308. [PMID: 35345673 DOI: 10.3389/fimmu.2022.857308] [Reference Citation Analysis]
5 Vilen Z, Reeves AE, O'Leary TR, Joeh E, Kamasawa N, Huang ML. Cell Surface Engineering Enables Surfaceome Profiling. ACS Chem Biol 2022. [PMID: 35443134 DOI: 10.1021/acschembio.1c00865] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Li N, Nguyen R, Thiele CJ, Ho M. Preclinical testing of chimeric antigen receptor T cells in neuroblastoma mouse models. STAR Protoc 2021;2:100942. [PMID: 34825213 DOI: 10.1016/j.xpro.2021.100942] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Schreiner P, Velasquez MP, Gottschalk S, Zhang J, Fan Y. Unifying heterogeneous expression data to predict targets for CAR-T cell therapy. Oncoimmunology 2021;10:2000109. [PMID: 34858726 DOI: 10.1080/2162402X.2021.2000109] [Reference Citation Analysis]
8 Obu S, Umeda K, Ueno H, Sonoda M, Tasaka K, Ogata H, Kouzuki K, Nodomi S, Saida S, Kato I, Hiramatsu H, Okamoto T, Ogawa E, Okajima H, Morita K, Kamikubo Y, Kawaguchi K, Watanabe K, Iwafuchi H, Yagyu S, Iehara T, Hosoi H, Nakahata T, Adachi S, Uemoto S, Heike T, Takita J. CD146 is a potential immunotarget for neuroblastoma. Cancer Sci 2021. [PMID: 34464480 DOI: 10.1111/cas.15124] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Ali Akbari Ghavimi S, Gehret PM, Aronson MR, Schipani R, Smith KWY, Borek RC, Germiller JA, Jacobs IN, Zur KB, Gottardi R. Drug delivery to the pediatric upper airway. Adv Drug Deliv Rev 2021;174:168-89. [PMID: 33845038 DOI: 10.1016/j.addr.2021.04.004] [Reference Citation Analysis]
10 Giannikopoulos P, Parham DM. Rhabdomyosarcoma: How Advanced Molecular Methods Are Shaping the Diagnostic and Therapeutic Paradigm. Pediatr Dev Pathol 2021;:10935266211013621. [PMID: 34107813 DOI: 10.1177/10935266211013621] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Li N, Torres MB, Spetz MR, Wang R, Peng L, Tian M, Dower CM, Nguyen R, Sun M, Tai CH, de Val N, Cachau R, Wu X, Hewitt SM, Kaplan RN, Khan J, St Croix B, Thiele CJ, Ho M. CAR T cells targeting tumor-associated exons of glypican 2 regress neuroblastoma in mice. Cell Rep Med 2021;2:100297. [PMID: 34195677 DOI: 10.1016/j.xcrm.2021.100297] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
12 Li N, Spetz MR, Li D, Ho M. Advances in immunotherapeutic targets for childhood cancers: A focus on glypican-2 and B7-H3. Pharmacol Ther 2021;223:107892. [PMID: 33992682 DOI: 10.1016/j.pharmthera.2021.107892] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Koo B, Rhee JK. Prediction of tumor purity from gene expression data using machine learning. Brief Bioinform 2021:bbab163. [PMID: 33954576 DOI: 10.1093/bib/bbab163] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wang JY, Wang XK, Zhu GZ, Zhou X, Yao J, Ma XP, Wang B, Peng T. Distinct diagnostic and prognostic values of Glypicans gene expression in patients with hepatocellular carcinoma. BMC Cancer 2021;21:462. [PMID: 33902495 DOI: 10.1186/s12885-021-08104-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Liu Z, Chen X, Roberts R, Huang R, Mikailov M, Tong W. Unraveling Gene Fusions for Drug Repositioning in High-Risk Neuroblastoma. Front Pharmacol 2021;12:608778. [PMID: 33967751 DOI: 10.3389/fphar.2021.608778] [Reference Citation Analysis]
16 Peppino G, Ruiu R, Arigoni M, Riccardo F, Iacoviello A, Barutello G, Quaglino E. Teneurins: Role in Cancer and Potential Role as Diagnostic Biomarkers and Targets for Therapy. Int J Mol Sci 2021;22:2321. [PMID: 33652578 DOI: 10.3390/ijms22052321] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Wagner J, Wickman E, DeRenzo C, Gottschalk S. CAR T Cell Therapy for Solid Tumors: Bright Future or Dark Reality? Mol Ther 2020;28:2320-39. [PMID: 32979309 DOI: 10.1016/j.ymthe.2020.09.015] [Cited by in Crossref: 91] [Cited by in F6Publishing: 75] [Article Influence: 45.5] [Reference Citation Analysis]
18 Liu KX, Joshi S. "Re-educating" Tumor Associated Macrophages as a Novel Immunotherapy Strategy for Neuroblastoma. Front Immunol 2020;11:1947. [PMID: 32983125 DOI: 10.3389/fimmu.2020.01947] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
19 Yang W, Song A, Ao M, Xu Y, Zhang H. Large-scale site-specific mapping of the O-GalNAc glycoproteome. Nat Protoc 2020;15:2589-610. [PMID: 32681153 DOI: 10.1038/s41596-020-0345-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
20 Li N, Spetz MR, Ho M. The Role of Glypicans in Cancer Progression and Therapy. J Histochem Cytochem 2020;68:841-62. [PMID: 32623934 DOI: 10.1369/0022155420933709] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
21 Loktev A, Shipley JM. Desmoplastic small round cell tumor (DSRCT): emerging therapeutic targets and future directions for potential therapies. Expert Opin Ther Targets 2020;24:281-5. [PMID: 32125905 DOI: 10.1080/14728222.2020.1738392] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
22 Bosse KR, Majzner RG, Mackall CL, Maris JM. Immune-Based Approaches for the Treatment of Pediatric Malignancies. Annu Rev Cancer Biol 2020;4:353-70. [PMID: 34113750 DOI: 10.1146/annurev-cancerbio-030419-033436] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
23 Sugimoto A, Kataoka TR, Ito H, Kitamura K, Saito N, Hirata M, Ueshima C, Takei Y, Moriyoshi K, Otsuka Y, Nishikori M, Takaori-Kondo A, Haga H. SLAM family member 8 is expressed in and enhances the growth of anaplastic large cell lymphoma. Sci Rep 2020;10:2505. [PMID: 32054954 DOI: 10.1038/s41598-020-59530-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Sobral LM, Sechler M, Parrish JK, McCann TS, Jones KL, Black JC, Jedlicka P. KDM3A/Ets1/MCAM axis promotes growth and metastatic properties in Rhabdomyosarcoma. Genes Cancer 2020;11:53-65. [PMID: 32577157 DOI: 10.18632/genesandcancer.200] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
25 Chen C, Dorado Garcia H, Scheer M, Henssen AG. Current and Future Treatment Strategies for Rhabdomyosarcoma. Front Oncol 2019;9:1458. [PMID: 31921698 DOI: 10.3389/fonc.2019.01458] [Cited by in Crossref: 58] [Cited by in F6Publishing: 65] [Article Influence: 19.3] [Reference Citation Analysis]
26 Shukla GS, Sun YJ, Pero SC, Krag DN. A cocktail of polyclonal affinity enriched antibodies against melanoma mutations increases binding and inhibits tumor growth. J Immunol Methods 2020;478:112720. [PMID: 31812660 DOI: 10.1016/j.jim.2019.112720] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
27 Kaur SP, Cummings BS. Role of glypicans in regulation of the tumor microenvironment and cancer progression. Biochem Pharmacol 2019;168:108-18. [PMID: 31251939 DOI: 10.1016/j.bcp.2019.06.020] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
28 Chen YY, Chang WA, Lin ES, Chen YJ, Kuo PL. Expressions of HLA Class II Genes in Cutaneous Melanoma Were Associated with Clinical Outcome: Bioinformatics Approaches and Systematic Analysis of Public Microarray and RNA-Seq Datasets. Diagnostics (Basel) 2019;9:E59. [PMID: 31212865 DOI: 10.3390/diagnostics9020059] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
29 He L, Li Z. B7-H3 and its role in bone cancers. Pathol Res Pract 2019;215:152420. [PMID: 31060912 DOI: 10.1016/j.prp.2019.04.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
30 Riegler LL, Jones GP, Lee DW. Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy. Ther Clin Risk Manag 2019;15:323-35. [PMID: 30880998 DOI: 10.2147/TCRM.S150524] [Cited by in Crossref: 76] [Cited by in F6Publishing: 83] [Article Influence: 25.3] [Reference Citation Analysis]
31 DeRenzo C, Gottschalk S. Genetic Modification Strategies to Enhance CAR T Cell Persistence for Patients With Solid Tumors. Front Immunol 2019;10:218. [PMID: 30828333 DOI: 10.3389/fimmu.2019.00218] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
32 Carrero I, Liu HC, Sikora AG, Milosavljevic A. Histoepigenetic analysis of HPV- and tobacco-associated head and neck cancer identifies both subtype-specific and common therapeutic targets despite divergent microenvironments. Oncogene 2019;38:3551-68. [PMID: 30655605 DOI: 10.1038/s41388-018-0659-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
33 Richards RM, Sotillo E, Majzner RG. CAR T Cell Therapy for Neuroblastoma. Front Immunol 2018;9:2380. [PMID: 30459759 DOI: 10.3389/fimmu.2018.02380] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 18.0] [Reference Citation Analysis]
34 Li N, Gao W, Zhang YF, Ho M. Glypicans as Cancer Therapeutic Targets. Trends Cancer 2018;4:741-54. [PMID: 30352677 DOI: 10.1016/j.trecan.2018.09.004] [Cited by in Crossref: 68] [Cited by in F6Publishing: 73] [Article Influence: 17.0] [Reference Citation Analysis]
35 Ziegler YS, Moresco JJ, Tu PG, Yates JR 3rd, Nardulli AM. Proteomic analysis identifies highly expressed plasma membrane proteins for detection and therapeutic targeting of specific breast cancer subtypes. Clin Proteomics 2018;15:30. [PMID: 30250408 DOI: 10.1186/s12014-018-9206-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
36 Mercatelli D, Bortolotti M, Bazzocchi A, Bolognesi A, Polito L. Immunoconjugates for Osteosarcoma Therapy: Preclinical Experiences and Future Perspectives. Biomedicines 2018;6:E19. [PMID: 29439419 DOI: 10.3390/biomedicines6010019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
37 Bosse KR, Raman P, Zhu Z, Lane M, Martinez D, Heitzeneder S, Rathi KS, Kendsersky NM, Randall M, Donovan L, Morrissy S, Sussman RT, Zhelev DV, Feng Y, Wang Y, Hwang J, Lopez G, Harenza JL, Wei JS, Pawel B, Bhatti T, Santi M, Ganguly A, Khan J, Marra MA, Taylor MD, Dimitrov DS, Mackall CL, Maris JM. Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma. Cancer Cell 2017;32:295-309.e12. [PMID: 28898695 DOI: 10.1016/j.ccell.2017.08.003] [Cited by in Crossref: 105] [Cited by in F6Publishing: 112] [Article Influence: 21.0] [Reference Citation Analysis]
38 Orentas RJ, Sindiri S, Duris C, Wen X, He J, Wei JS, Jarzembowski J, Khan J. Paired Expression Analysis of Tumor Cell Surface Antigens. Front Oncol 2017;7:173. [PMID: 28871274 DOI: 10.3389/fonc.2017.00173] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
39 Li N, Fu H, Hewitt SM, Dimitrov DS, Ho M. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma. Proc Natl Acad Sci U S A 2017;114:E6623-31. [PMID: 28739923 DOI: 10.1073/pnas.1706055114] [Cited by in Crossref: 68] [Cited by in F6Publishing: 76] [Article Influence: 13.6] [Reference Citation Analysis]
40 Walker AJ, Majzner RG, Zhang L, Wanhainen K, Long AH, Nguyen SM, Lopomo P, Vigny M, Fry TJ, Orentas RJ, Mackall CL. Tumor Antigen and Receptor Densities Regulate Efficacy of a Chimeric Antigen Receptor Targeting Anaplastic Lymphoma Kinase. Mol Ther 2017;25:2189-201. [PMID: 28676342 DOI: 10.1016/j.ymthe.2017.06.008] [Cited by in Crossref: 179] [Cited by in F6Publishing: 190] [Article Influence: 35.8] [Reference Citation Analysis]
41 Crépin R, Gentien D, Duché A, Rapinat A, Reyes C, Némati F, Massonnet G, Decaudin D, Djender S, Moutel S, Desrumeaux K, Cassoux N, Piperno-neumann S, Amigorena S, Perez F, Roman-roman S, de Marco A. Nanobodies against surface biomarkers enable the analysis of tumor genetic heterogeneity in uveal melanoma patient-derived xenografts. Pigment Cell Melanoma Res 2017;30:317-27. [DOI: 10.1111/pcmr.12577] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
42 Anderson J. Unleashing the immune response against childhood solid cancers. Pediatr Blood Cancer 2017;64. [PMID: 28383769 DOI: 10.1002/pbc.26548] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
43 Sechler M, Parrish JK, Birks DK, Jedlicka P. The histone demethylase KDM3A, and its downstream target MCAM, promote Ewing Sarcoma cell migration and metastasis. Oncogene 2017;36:4150-60. [PMID: 28319067 DOI: 10.1038/onc.2017.44] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 8.2] [Reference Citation Analysis]
44 Boyiadzis M, Bishop MR, Abonour R, Anderson KC, Ansell SM, Avigan D, Barbarotta L, Barrett AJ, Van Besien K, Bergsagel PL, Borrello I, Brody J, Brufsky J, Cairo M, Chari A, Cohen A, Cortes J, Forman SJ, Friedberg JW, Fuchs EJ, Gore SD, Jagannath S, Kahl BS, Kline J, Kochenderfer JN, Kwak LW, Levy R, de Lima M, Litzow MR, Mahindra A, Miller J, Munshi NC, Orlowski RZ, Pagel JM, Porter DL, Russell SJ, Schwartz K, Shipp MA, Siegel D, Stone RM, Tallman MS, Timmerman JM, Van Rhee F, Waller EK, Welsh A, Werner M, Wiernik PH, Dhodapkar MV. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia. J Immunother Cancer 2016;4:90. [PMID: 28018601 DOI: 10.1186/s40425-016-0188-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
45 Cassinelli G, Zaffaroni N, Lanzi C. The heparanase/heparan sulfate proteoglycan axis: A potential new therapeutic target in sarcomas. Cancer Lett 2016;382:245-54. [PMID: 27666777 DOI: 10.1016/j.canlet.2016.09.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
46 Shern JF, Yohe ME, Khan J. Pediatric Rhabdomyosarcoma. Crit Rev Oncog 2015;20:227-43. [PMID: 26349418 DOI: 10.1615/critrevoncog.2015013800] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 8.2] [Reference Citation Analysis]
47 Mossé YP. Anaplastic Lymphoma Kinase as a Cancer Target in Pediatric Malignancies. Clin Cancer Res 2016;22:546-52. [PMID: 26503946 DOI: 10.1158/1078-0432.CCR-14-1100] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 7.3] [Reference Citation Analysis]
48 Shalabi H, Angiolillo A, Fry TJ. Beyond CD19: Opportunities for Future Development of Targeted Immunotherapy in Pediatric Relapsed-Refractory Acute Leukemia. Front Pediatr 2015;3:80. [PMID: 26484338 DOI: 10.3389/fped.2015.00080] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
49 Gao W, Kim H, Ho M. Human Monoclonal Antibody Targeting the Heparan Sulfate Chains of Glypican-3 Inhibits HGF-Mediated Migration and Motility of Hepatocellular Carcinoma Cells. PLoS One. 2015;10:e0137664. [PMID: 26332121 DOI: 10.1371/journal.pone.0137664] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 7.0] [Reference Citation Analysis]
50 Kopp LM, Katsanis E. Targeted immunotherapy for pediatric solid tumors. Oncoimmunology 2016;5:e1087637. [PMID: 27141344 DOI: 10.1080/2162402X.2015.1087637] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
51 Roberts SS, Chou AJ, Cheung NK. Immunotherapy of Childhood Sarcomas. Front Oncol 2015;5:181. [PMID: 26301204 DOI: 10.3389/fonc.2015.00181] [Cited by in Crossref: 43] [Cited by in F6Publishing: 49] [Article Influence: 6.1] [Reference Citation Analysis]
52 Capitini CM, Otto M, DeSantes KB, Sondel PM. Immunotherapy in pediatric malignancies: current status and future perspectives. Future Oncol 2014;10:1659-78. [PMID: 25145434 DOI: 10.2217/fon.14.62] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
53 Rossig C. Cellular immunotherapy strategies for Ewing sarcoma. Immunotherapy 2014;6:611-21. [PMID: 24896629 DOI: 10.2217/imt.14.36] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
54 Fry TJ, Mackall CL. T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2013;2013:348-353. [PMID: 24319203 DOI: 10.1182/asheducation-2013.1.348] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
55 Mackall CL, Merchant MS, Fry TJ. Immune-based therapies for childhood cancer. Nat Rev Clin Oncol 2014;11:693-703. [PMID: 25348789 DOI: 10.1038/nrclinonc.2014.177] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 8.6] [Reference Citation Analysis]
56 Tang J, Shen L, Yang Q, Zhang C. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition. Cell Prolif 2014;47:427-34. [PMID: 25174891 DOI: 10.1111/cpr.12129] [Cited by in Crossref: 47] [Cited by in F6Publishing: 56] [Article Influence: 5.9] [Reference Citation Analysis]
57 Orentas RJ, Nordlund J, He J, Sindiri S, Mackall C, Fry TJ, Khan J. Bioinformatic description of immunotherapy targets for pediatric T-cell leukemia and the impact of normal gene sets used for comparison. Front Oncol 2014;4:134. [PMID: 24959420 DOI: 10.3389/fonc.2014.00134] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
58 Emdad L, Das SK, Dasgupta S, Hu B, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC: signaling pathways, downstream genes, interacting proteins, and regulation of tumor angiogenesis. Adv Cancer Res 2013;120:75-111. [PMID: 23889988 DOI: 10.1016/B978-0-12-401676-7.00003-6] [Cited by in Crossref: 68] [Cited by in F6Publishing: 71] [Article Influence: 8.5] [Reference Citation Analysis]