BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Andrzejczuk LA, Banerjee S, England SJ, Voufo C, Kamara K, Lewis KE. Tal1, Gata2a, and Gata3 Have Distinct Functions in the Development of V2b and Cerebrospinal Fluid-Contacting KA Spinal Neurons. Front Neurosci 2018;12:170. [PMID: 29651232 DOI: 10.3389/fnins.2018.00170] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Qian J, Shen C, Fang C, Sun J. Oscillating field stimulation promotes neurogenesis of neural stem cells through miR-124/Tal1 axis to repair spinal cord injury in rats. Neural Regen Res 2023;18:895. [DOI: 10.4103/1673-5374.353505] [Reference Citation Analysis]
2 Barker CM, Miles KD, Doll CA. Fmrp regulates neuronal balance in embryonic motor circuit formation. Front Neurosci 2022;16. [DOI: 10.3389/fnins.2022.962901] [Reference Citation Analysis]
3 Bello-rojas S, Bagnall MW. Clonally related, Notch-differentiated spinal neurons integrate into distinct circuits.. [DOI: 10.1101/2022.09.26.509532] [Reference Citation Analysis]
4 Alper SR, Dorsky RI. Unique advantages of zebrafish larvae as a model for spinal cord regeneration. Front Mol Neurosci 2022;15:983336. [DOI: 10.3389/fnmol.2022.983336] [Reference Citation Analysis]
5 Shin M, Nozaki T, Toles B, Kolb A, Luk K, Isogai S, Ishida K, Hanasaka T, Parsons MJ, Wolfe SA, Lawson ND. Generation of floxed alleles for cell-specific knockout in zebrafish.. [DOI: 10.1101/2022.09.06.506849] [Reference Citation Analysis]
6 Xing L, Chai R, Wang J, Lin J, Li H, Wang Y, Lai B, Sun J, Chen G. Expression of myelin transcription factor 1 and lamin B receptor mediate neural progenitor fate transition in the zebrafish spinal cord pMN domain. J Biol Chem 2022;:102452. [PMID: 36063998 DOI: 10.1016/j.jbc.2022.102452] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Feng G, Sun Y. The Polycomb group gene rnf2 is essential for central and enteric neural system development in zebrafish. Front Neurosci 2022;16:960149. [DOI: 10.3389/fnins.2022.960149] [Reference Citation Analysis]
8 Bello-Rojas S, Bagnall MW. Clonally related, Notch-differentiated spinal neurons integrate into distinct circuits. Elife 2022;11. [PMID: 36580075 DOI: 10.7554/eLife.83680] [Reference Citation Analysis]
9 Shin M, Lawson ND. Back and forth: History of and new insights on the vertebrate lymphatic valve. Dev Growth Differ 2021. [PMID: 34716915 DOI: 10.1111/dgd.12757] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Russ DE, Cross RBP, Li L, Koch SC, Matson KJE, Yadav A, Alkaslasi MR, Lee DI, Le Pichon CE, Menon V, Levine AJ. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat Commun 2021;12:5722. [PMID: 34588430 DOI: 10.1038/s41467-021-25125-1] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
11 Kempf J, Knelles K, Hersbach BA, Petrik D, Riedemann T, Bednarova V, Janjic A, Simon-Ebert T, Enard W, Smialowski P, Götz M, Masserdotti G. Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2. Cell Rep 2021;36:109409. [PMID: 34289357 DOI: 10.1016/j.celrep.2021.109409] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
12 Xing L, Chai R, Wang J, Lin J, Li H, Wang Y, Lai B, Sun J, Chen G. Heterogeneity and molecular programming of progenitors for motor neurons and oligodendrocytes.. [DOI: 10.1101/2021.06.01.446521] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Vasudevan D, Liu YC, Barrios JP, Wheeler MK, Douglass AD, Dorsky RI. Regenerated interneurons integrate into locomotor circuitry following spinal cord injury. Exp Neurol 2021;342:113737. [PMID: 33957107 DOI: 10.1016/j.expneurol.2021.113737] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Swedo S, Baguley DM, Denys D, Dixon LJ, Erfanian M, Fioretti A, Jastreboff PJ, Kumar S, Rosenthal MZ, Rouw R, Schiller D, Simner J, Storch EA, Taylor S, Werff KRV, Raver SM. A Consensus Definition of Misophonia: Using a Delphi Process to Reach Expert Agreement.. [DOI: 10.1101/2021.04.05.21254951] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
15 Yang L, Wang F, Strähle U. The Genetic Programs Specifying Kolmer-Agduhr Interneurons. Front Neurosci 2020;14:577879. [PMID: 33162880 DOI: 10.3389/fnins.2020.577879] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
16 Cerliani L, Rouw R. Increased orbitofrontal connectivity in misophonia.. [DOI: 10.1101/2020.10.29.346650] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Edelstein M, Monk B, Ramachandran V, Rouw R. Context influences how individuals with misophonia respond to sounds.. [DOI: 10.1101/2020.09.12.292391] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
18 Mizoguchi T, Fukada M, Iihama M, Song X, Fukagawa S, Kuwabara S, Omaru S, Higashijima SI, Itoh M. Transient activation of the Notch-her15.1 axis plays an important role in the maturation of V2b interneurons. Development 2020;147:dev191312. [PMID: 32855202 DOI: 10.1242/dev.191312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
19 Wang J, Li H, Chen L, Dong J, Yang J, Gong Z, Wang B, Zhao X. mRNA Profiling for miR-124-mediated Repair in Spinal Cord Injury. Neuroscience 2020;438:158-68. [DOI: 10.1016/j.neuroscience.2020.05.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
20 Zhang Q, Xu H, Zhao W, Zheng J, Sun L, Luo C. Zygotic Vsx1 Plays a Key Role in Defining V2a Interneuron Sub-Lineage by Directly Repressing tal1 Transcription in Zebrafish. Int J Mol Sci 2020;21:E3600. [PMID: 32443726 DOI: 10.3390/ijms21103600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Tonelli Gombalová Z, Košuth J, Alexovič Matiašová A, Zrubáková J, Žežula I, Giallongo T, Di Giulio AM, Carelli S, Tomašková L, Daxnerová Z, Ševc J. Majority of cerebrospinal fluid‐contacting neurons in the spinal cord of C57Bl/6N mice is present in ectopic position unlike in other studied experimental mice strains and mammalian species. J Comp Neurol 2020;528:2523-50. [DOI: 10.1002/cne.24909] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
22 Tambalo M, Mitter R, Wilkinson DG. A single cell transcriptome atlas of the developing zebrafish hindbrain. Development 2020;147:dev184143. [PMID: 32094115 DOI: 10.1242/dev.184143] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
23 Babski H, Jovanic T, Surel C, Yoshikawa S, Zwart MF, Valmier J, Thomas JB, Enriquez J, Carroll P, Garcès A. A GABAergic Maf-expressing interneuron subset regulates the speed of locomotion in Drosophila. Nat Commun 2019;10:4796. [PMID: 31641138 DOI: 10.1038/s41467-019-12693-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
24 Tambalo M, Mitter R, Wilkinson DG. A single cell transcriptome atlas of the developing zebrafish hindbrain.. [DOI: 10.1101/745141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Di Bella DJ, Carcagno AL, Bartolomeu ML, Pardi MB, Löhr H, Siegel N, Hammerschmidt M, Marín-burgin A, Lanuza GM. Ascl1 Balances Neuronal versus Ependymal Fate in the Spinal Cord Central Canal. Cell Reports 2019;28:2264-2274.e3. [DOI: 10.1016/j.celrep.2019.07.087] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
26 Callahan RA, Roberts R, Sengupta M, Kimura Y, Higashijima SI, Bagnall MW. Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control. Elife 2019;8:e47837. [PMID: 31355747 DOI: 10.7554/eLife.47837] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
27 Marass M, Beisaw A, Gerri C, Luzzani F, Fukuda N, Günther S, Kuenne C, Reischauer S, Stainier DYR. Genome-wide strategies reveal target genes of Npas4l associated with vascular development in zebrafish. Development 2019;146:dev173427. [PMID: 31097478 DOI: 10.1242/dev.173427] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
28 Callahan RA, Roberts R, Sengupta M, Kimura Y, Higashijima S, Bagnall MW. Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control.. [DOI: 10.1101/615906] [Reference Citation Analysis]
29 Gerber V, Yang L, Takamiya M, Ribes V, Gourain V, Peravali R, Stegmaier J, Mikut R, Reischl M, Ferg M, Rastegar S, Strähle U. The HMG box transcription factors Sox1a and b specify a new class of glycinergic interneurons in the spinal cord of zebrafish embryos. Development. [DOI: 10.1242/dev.172510] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
30 Marass M, Beisaw A, Gerri C, Luzzani F, Fukuda N, Günther S, Kuenne C, Reischauer S, Stainier DYR. Genome-wide strategies reveal target genes of Npas4l associated with cardiovascular development in zebrafish.. [DOI: 10.1101/461988] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]