BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liguz-Lecznar M, Urban-Ciecko J, Kossut M. Somatostatin and Somatostatin-Containing Neurons in Shaping Neuronal Activity and Plasticity. Front Neural Circuits 2016;10:48. [PMID: 27445703 DOI: 10.3389/fncir.2016.00048] [Cited by in Crossref: 65] [Cited by in F6Publishing: 74] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Noh M, Lee SJ, Arokiaraj CM, Seal RP. Spinal interneurons and pain. Spinal Interneurons 2023. [DOI: 10.1016/b978-0-12-819260-3.00006-8] [Reference Citation Analysis]
2 Katz BM, Walton LR, Houston KM, Cerri DH, Shih YI. Putative neurochemical and cell type contributions to hemodynamic activity in the rodent caudate putamen. J Cereb Blood Flow Metab 2022. [DOI: 10.1177/0271678x221142533] [Reference Citation Analysis]
3 Takahashi M, Kobayashi T, Mizuma H, Yamauchi K, Okamoto S, Okamoto K, Ishida Y, Koike M, Watanabe M, Isa T, Hioki H. Preferential arborization of dendrites and axons of parvalbumin- and somatostatin-positive GABAergic neurons within subregions of the mouse claustrum. Neurosci Res 2022:S0168-0102(22)00288-7. [PMID: 36574563 DOI: 10.1016/j.neures.2022.11.008] [Reference Citation Analysis]
4 Balog M, Anderson A, Gurumurthy CB, Quadros RM, Korade Z, Mirnics K. Knock-in mouse models for studying somatostatin and cholecystokinin expressing cells. J Neurosci Methods 2022;381:109704. [PMID: 36070817 DOI: 10.1016/j.jneumeth.2022.109704] [Reference Citation Analysis]
5 Dobrzanski G, Zakrzewska R, Kossut M, Liguz-Lecznar M. Impact of somatostatin interneurons on interactions between barrels in plasticity induced by whisker deprivation. Sci Rep 2022;12:17992. [PMID: 36289269 DOI: 10.1038/s41598-022-22801-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Voelkl K, Schulz-trieglaff EK, Klein R, Dudanova I. Distinct histological alterations of cortical interneuron types in mouse models of Huntington’s disease. Front Neurosci 2022;16:1022251. [DOI: 10.3389/fnins.2022.1022251] [Reference Citation Analysis]
7 Knowles SJ, Holter MC, Li G, Bjorklund GR, Rees KP, Martinez-fuentes JS, Nishimura KJ, Afshari AE, Fry N, Stafford AM, Vogt D, Mangone M, Anderson T, Newbern JM. Multifunctional requirements for ERK1/2 signaling in the development of ganglionic eminence derived glia and cortical inhibitory neurons.. [DOI: 10.1101/2022.08.02.502073] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Riedemann T, Sutor B. Cell-type specific effects of somatostatin on corticocortical information processing in the anterior cingulate cortex.. [DOI: 10.1101/2022.08.02.502518] [Reference Citation Analysis]
9 Brockway DF, Moyer JB, Aloimonos CM, Clarity T, Griffith KR, Smith GC, Dao NC, Hossain MS, Drew PJ, Gordon JA, Kupferschmidt DA, Crowley NA. Somatostatin peptide signaling dampens cortical circuits and promotes exploratory behavior.. [DOI: 10.1101/2022.07.18.499817] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Llorca A, Deogracias R. Origin, Development, and Synaptogenesis of Cortical Interneurons. Front Neurosci 2022;16:929469. [DOI: 10.3389/fnins.2022.929469] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Casello SM, Flores RJ, Yarur HE, Wang H, Awanyai M, Arenivar MA, Jaime-lara RB, Bravo-rivera H, Tejeda HA. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits 2022;16:796443. [DOI: 10.3389/fncir.2022.796443] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zhou H, Yang X, Liao C, Chen H, Wu Y, Xie B, Ma F, Zhang W. The Development of Mechanical Allodynia in Diabetic Rats Revealed by Single-Cell RNA-Seq. Front Mol Neurosci 2022;15:856299. [PMID: 35668789 DOI: 10.3389/fnmol.2022.856299] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Banovac I, Sedmak D, Esclapez M, Petanjek Z. The Distinct Characteristics of Somatostatin Neurons in the Human Brain. Mol Neurobiol 2022. [PMID: 35665897 DOI: 10.1007/s12035-022-02892-6] [Reference Citation Analysis]
14 Henriques VJ, Chiavegato A, Carmignoto G, Gómez-gonzalo M. Astrocytes Modulate Somatostatin Interneuron Signaling in the Visual Cortex. Cells 2022;11:1400. [DOI: 10.3390/cells11091400] [Reference Citation Analysis]
15 Liguz-lecznar M, Dobrzanski G, Kossut M. Somatostatin and Somatostatin-Containing Interneurons—From Plasticity to Pathology. Biomolecules 2022;12:312. [DOI: 10.3390/biom12020312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Liu Z, Wang Q, Han F. Synaptic Role in Facilitating Synchronous Theta Oscillations in a Hybrid Hippocampal Neuronal Network. Front Comput Neurosci 2022;16:791189. [DOI: 10.3389/fncom.2022.791189] [Reference Citation Analysis]
17 Speigel IA, Hemmings Jr. HC. Relevance of Cortical and Hippocampal Interneuron Functional Diversity to General Anesthetic Mechanisms: A Narrative Review. Front Synaptic Neurosci 2022;13:812905. [DOI: 10.3389/fnsyn.2021.812905] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Warm D, Schroer J, Sinning A. Gabaergic Interneurons in Early Brain Development: Conducting and Orchestrated by Cortical Network Activity. Front Mol Neurosci 2022;14:807969. [DOI: 10.3389/fnmol.2021.807969] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
19 Kwon K, Lee M, Chung H, Pak J, Jeon C. The Organization of Somatostatin-Immunoreactive Cells in the Visual Cortex of the Gerbil. Biomedicines 2022;10:92. [DOI: 10.3390/biomedicines10010092] [Reference Citation Analysis]
20 Pais-Roldán P, Mateo C, Pan WJ, Acland B, Kleinfeld D, Snyder LH, Yu X, Keilholz S. Contribution of animal models toward understanding resting state functional connectivity. Neuroimage 2021;245:118630. [PMID: 34644593 DOI: 10.1016/j.neuroimage.2021.118630] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
21 Liau ES, Jin S, Chen Y, Liu W, Yong LW, Tsai C, Calon M, Yu J, Su Y, Nedelec S, Nie Q, Chen J. Single-cell transcriptomic analysis unveils spinal motor neuron subtype diversity underpinning the water-to-land transition in vertebrates.. [DOI: 10.1101/2021.09.29.462340] [Reference Citation Analysis]
22 Williams RH, Riedemann T. Development, Diversity, and Death of MGE-Derived Cortical Interneurons. Int J Mol Sci 2021;22:9297. [PMID: 34502208 DOI: 10.3390/ijms22179297] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Racine AS, Michon FX, Laplante I, Lacaille JC. Somatostatin contributes to long-term potentiation at excitatory synapses onto hippocampal somatostatinergic interneurons. Mol Brain 2021;14:130. [PMID: 34429141 DOI: 10.1186/s13041-021-00830-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Neumann WL, Sandoval KE, Mobayen S, Minaeian M, Kukielski SG, Srabony KN, Frare R, Slater O, Farr SA, Niehoff ML, Hospital A, Kontoyianni M, Crider AM, Witt KA. Synthesis and structure-activity relationships of 3,4,5-trisubstituted-1,2,4-triazoles: high affinity and selective somatostatin receptor-4 agonists for Alzheimer's disease treatment. RSC Med Chem 2021;12:1352-65. [PMID: 34458738 DOI: 10.1039/d1md00044f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Shi A, Petrache AL, Shi J, Ali AB. Preserved Calretinin Interneurons in an App Model of Alzheimer's Disease Disrupt Hippocampal Inhibition via Upregulated P2Y1 Purinoreceptors. Cereb Cortex 2020;30:1272-90. [PMID: 31407772 DOI: 10.1093/cercor/bhz165] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
26 Honoré E, Khlaifia A, Bosson A, Lacaille JC. Hippocampal Somatostatin Interneurons, Long-Term Synaptic Plasticity and Memory. Front Neural Circuits 2021;15:687558. [PMID: 34149368 DOI: 10.3389/fncir.2021.687558] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
27 Wong KLL, Nair A, Augustine GJ. Changing the Cortical Conductor's Tempo: Neuromodulation of the Claustrum. Front Neural Circuits 2021;15:658228. [PMID: 34054437 DOI: 10.3389/fncir.2021.658228] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Hsu WM, Kastner DB, Baccus SA, Sharpee TO. How inhibitory neurons increase information transmission under threshold modulation. Cell Rep 2021;35:109158. [PMID: 34038717 DOI: 10.1016/j.celrep.2021.109158] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Chang M, Kanold PO. Development of Auditory Cortex Circuits. J Assoc Res Otolaryngol 2021;22:237-59. [PMID: 33909161 DOI: 10.1007/s10162-021-00794-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Song YH, Yoon J, Lee SH. The role of neuropeptide somatostatin in the brain and its application in treating neurological disorders. Exp Mol Med 2021;53:328-38. [PMID: 33742131 DOI: 10.1038/s12276-021-00580-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
31 Agoglia RM, Sun D, Birey F, Yoon SJ, Miura Y, Sabatini K, Pașca SP, Fraser HB. Primate cell fusion disentangles gene regulatory divergence in neurodevelopment. Nature 2021;592:421-7. [PMID: 33731928 DOI: 10.1038/s41586-021-03343-3] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
32 Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021;82:109947. [PMID: 33582184 DOI: 10.1016/j.cellsig.2021.109947] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
33 Rofo F, Ugur Yilmaz C, Metzendorf N, Gustavsson T, Beretta C, Erlandsson A, Sehlin D, Syvänen S, Nilsson P, Hultqvist G. Enhanced neprilysin-mediated degradation of hippocampal Aβ42 with a somatostatin peptide that enters the brain. Theranostics 2021;11:789-804. [PMID: 33391505 DOI: 10.7150/thno.50263] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
34 Dudás B, Merchenthaler I. Morphology and distribution of hypothalamic peptidergic systems. Handb Clin Neurol 2021;179:67-85. [PMID: 34225984 DOI: 10.1016/B978-0-12-819975-6.00002-9] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Beesley S, Sullenberger T, Ailani R, D'Orio C, Crockett MS, Kumar SS. d-Serine Intervention In The Medial Entorhinal Area Alters TLE-Related Pathology In CA1 Hippocampus Via The Temporoammonic Pathway. Neuroscience 2021;453:168-86. [PMID: 33197499 DOI: 10.1016/j.neuroscience.2020.10.025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
36 Brockway DF, Crowley NA. Turning the 'Tides on Neuropsychiatric Diseases: The Role of Peptides in the Prefrontal Cortex. Front Behav Neurosci 2020;14:588400. [PMID: 33192369 DOI: 10.3389/fnbeh.2020.588400] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
37 Su J, Basso D, Iyer S, Su K, Wei J, Fox MA. Paracrine Role for Somatostatin Interneurons in the Assembly of Perisomatic Inhibitory Synapses. J Neurosci 2020;40:7421-35. [PMID: 32847968 DOI: 10.1523/JNEUROSCI.0613-20.2020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
38 Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2021;101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
39 Heger P, Zheng W, Rottmann A, Panfilio KA, Wiehe T. The genetic factors of bilaterian evolution. Elife 2020;9:e45530. [PMID: 32672535 DOI: 10.7554/eLife.45530] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
40 Smith SJ, Hawrylycz M, Rossier J, Sümbül U. New light on cortical neuropeptides and synaptic network plasticity. Curr Opin Neurobiol 2020;63:176-88. [PMID: 32679509 DOI: 10.1016/j.conb.2020.04.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
41 Chiazza F, Pintana H, Lietzau G, Nyström T, Patrone C, Darsalia V. The Stroke-Induced Increase of Somatostatin-Expressing Neurons is Inhibited by Diabetes: A Potential Mechanism at the Basis of Impaired Stroke Recovery. Cell Mol Neurobiol 2021;41:591-603. [PMID: 32447613 DOI: 10.1007/s10571-020-00874-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
42 Dobrzanski G, Lukomska A, Zakrzewska R, Posluszny A, Kanigowski D, Urban-ciecko J, Liguz-lecznar M, Kossut M. Learning-induced plasticity in the barrel cortex is disrupted by inhibition of layer 4 somatostatin-containing interneurons.. [DOI: 10.1101/2020.05.11.087791] [Reference Citation Analysis]
43 Brunet A, Stuart-Lopez G, Burg T, Scekic-Zahirovic J, Rouaux C. Cortical Circuit Dysfunction as a Potential Driver of Amyotrophic Lateral Sclerosis. Front Neurosci 2020;14:363. [PMID: 32410944 DOI: 10.3389/fnins.2020.00363] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
44 Song YH, Hwang YS, Kim K, Lee HR, Kim JH, Maclachlan C, Dubois A, Jung MW, Petersen CCH, Knott G, Lee SH, Lee SH. Somatostatin enhances visual processing and perception by suppressing excitatory inputs to parvalbumin-positive interneurons in V1. Sci Adv 2020;6:eaaz0517. [PMID: 32494634 DOI: 10.1126/sciadv.aaz0517] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
45 Robinson SL, Thiele TE. A role for the neuropeptide somatostatin in the neurobiology of behaviors associated with substances abuse and affective disorders. Neuropharmacology 2020;167:107983. [PMID: 32027909 DOI: 10.1016/j.neuropharm.2020.107983] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
46 Kim S, Kim H, Park D, Kim J, Hong J, Kim JS, Jung H, Kim D, Cheong E, Ko J, Um JW. Loss of IQSEC3 Disrupts GABAergic Synapse Maintenance and Decreases Somatostatin Expression in the Hippocampus. Cell Reports 2020;30:1995-2005.e5. [DOI: 10.1016/j.celrep.2020.01.053] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
47 Rubin BR, Milner TA, Pickel VM, Coleman CG, Marques-Lopes J, Van Kempen TA, Kazim SF, McEwen BS, Gray JD, Pereira AC. Sex and age differentially affect GABAergic neurons in the mouse prefrontal cortex and hippocampus following chronic intermittent hypoxia. Exp Neurol 2020;325:113075. [PMID: 31837319 DOI: 10.1016/j.expneurol.2019.113075] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
48 Santos VR, Melo IS, Pacheco ALD, Castro OW. Life and death in the hippocampus: What's bad? Epilepsy Behav 2021;121:106595. [PMID: 31759972 DOI: 10.1016/j.yebeh.2019.106595] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
49 Sanchez-Mejias E, Nuñez-Diaz C, Sanchez-Varo R, Gomez-Arboledas A, Garcia-Leon JA, Fernandez-Valenzuela JJ, Mejias-Ortega M, Trujillo-Estrada L, Baglietto-Vargas D, Moreno-Gonzalez I, Davila JC, Vitorica J, Gutierrez A. Distinct disease-sensitive GABAergic neurons in the perirhinal cortex of Alzheimer's mice and patients. Brain Pathol 2020;30:345-63. [PMID: 31491047 DOI: 10.1111/bpa.12785] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
50 Forte N, Binda F, Contestabile A, Benfenati F, Baldelli P. Synapsin I Synchronizes GABA Release in Distinct Interneuron Subpopulations. Cerebral Cortex 2020;30:1393-406. [DOI: 10.1093/cercor/bhz174] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
51 Chistiakova M, Ilin V, Roshchin M, Bannon N, Malyshev A, Kisvárday Z, Volgushev M. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex. J Neurosci 2019;39:6865-78. [PMID: 31300522 DOI: 10.1523/JNEUROSCI.3039-18.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
52 Riedemann T. Diversity and Function of Somatostatin-Expressing Interneurons in the Cerebral Cortex. Int J Mol Sci 2019;20:E2952. [PMID: 31212931 DOI: 10.3390/ijms20122952] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
53 Wang CZ, Ma J, Xu YQ, Jiang SN, Chen TQ, Yuan ZL, Mao XY, Zhang SQ, Liu LY, Fu Y, Yu YC. Early-generated interneurons regulate neuronal circuit formation during early postnatal development. Elife 2019;8:e44649. [PMID: 31120418 DOI: 10.7554/eLife.44649] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
54 Ardalan M, Svedin P, Baburamani AA, Supramaniam VG, Ek J, Hagberg H, Mallard C. Dysmaturation of Somatostatin Interneurons Following Umbilical Cord Occlusion in Preterm Fetal Sheep. Front Physiol 2019;10:563. [PMID: 31178744 DOI: 10.3389/fphys.2019.00563] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
55 Cammalleri M, Bagnoli P, Bigiani A. Molecular and Cellular Mechanisms Underlying Somatostatin-Based Signaling in Two Model Neural Networks, the Retina and the Hippocampus. Int J Mol Sci 2019;20:E2506. [PMID: 31117258 DOI: 10.3390/ijms20102506] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
56 Nocera S, Simon A, Fiquet O, Chen Y, Gascuel J, Datiche F, Schneider N, Epelbaum J, Viollet C. Somatostatin Serves a Modulatory Role in the Mouse Olfactory Bulb: Neuroanatomical and Behavioral Evidence. Front Behav Neurosci 2019;13:61. [PMID: 31024270 DOI: 10.3389/fnbeh.2019.00061] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
57 Hook M, Xu F, Terenina E, Zhao W, Starlard-Davenport A, Mormede P, Jones BC, Mulligan MK, Lu L. Exploring the involvement of Tac2 in the mouse hippocampal stress response through gene networking. Gene 2019;696:176-85. [PMID: 30769143 DOI: 10.1016/j.gene.2019.02.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
58 Iwasawa C, Kuzumaki N, Suda Y, Kagawa R, Oka Y, Hattori N, Okano H, Narita M. Reduced expression of somatostatin in GABAergic interneurons derived from induced pluripotent stem cells of patients with parkin mutations. Mol Brain 2019;12:5. [PMID: 30658665 DOI: 10.1186/s13041-019-0426-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
59 Wang C, Ma J, Jiang S, Chen T, Xu Y, Yuan Z, Mao X, Zhang S, Liu L, Fu Y, Yu Y. Early-Generated Interneurons Regulate Neuronal Circuit Formation during Early Postnatal Development.. [DOI: 10.1101/509844] [Reference Citation Analysis]
60 Jalalvand E, Robertson B, Tostivint H, Löw P, Wallén P, Grillner S. Cerebrospinal Fluid-Contacting Neurons Sense pH Changes and Motion in the Hypothalamus. J Neurosci 2018;38:7713-24. [PMID: 30037834 DOI: 10.1523/JNEUROSCI.3359-17.2018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
61 Paik S, Somvanshi RK, Kumar U. Somatostatin Maintains Permeability and Integrity of Blood-Brain Barrier in β-Amyloid Induced Toxicity. Mol Neurobiol 2019;56:292-306. [PMID: 29700775 DOI: 10.1007/s12035-018-1045-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
62 Martinez-Galan JR, Verdejo A, Caminos E. TRPC1 Channels Are Expressed in Pyramidal Neurons and in a Subset of Somatostatin Interneurons in the Rat Neocortex. Front Neuroanat 2018;12:15. [PMID: 29535613 DOI: 10.3389/fnana.2018.00015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
63 Rees CL, White CM, Ascoli GA. Neurochemical Markers in the Mammalian Brain: Structure, Roles in Synaptic Communication, and Pharmacological Relevance. Curr Med Chem 2017;24:3077-103. [PMID: 28413962 DOI: 10.2174/0929867324666170414163506] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
64 Zhang C, Yan C, Ren M, Li A, Quan T, Gong H, Yuan J. A platform for stereological quantitative analysis of the brain-wide distribution of type-specific neurons. Sci Rep 2017;7:14334. [PMID: 29085023 DOI: 10.1038/s41598-017-14699-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
65 Niethard N, Burgalossi A, Born J. Plasticity during Sleep Is Linked to Specific Regulation of Cortical Circuit Activity. Front Neural Circuits 2017;11:65. [PMID: 28966578 DOI: 10.3389/fncir.2017.00065] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 7.2] [Reference Citation Analysis]
66 Pérez-rando M, Castillo-gómez E, Bellés M, Carceller H, Nácher J. The activation of NMDA receptors alters the structural dynamics of the spines of hippocampal interneurons. Neuroscience Letters 2017;658:79-84. [DOI: 10.1016/j.neulet.2017.08.042] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
67 Rozycka A, Liguz-Lecznar M. The space where aging acts: focus on the GABAergic synapse. Aging Cell 2017;16:634-43. [PMID: 28497576 DOI: 10.1111/acel.12605] [Cited by in Crossref: 84] [Cited by in F6Publishing: 93] [Article Influence: 14.0] [Reference Citation Analysis]
68 Perez-Rando M, Castillo-Gómez E, Guirado R, Blasco-Ibañez JM, Crespo C, Varea E, Nacher J. NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons. Front Cell Neurosci 2017;11:166. [PMID: 28659763 DOI: 10.3389/fncel.2017.00166] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
69 Feldmeyer D, Qi G, Emmenegger V, Staiger JF. Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex. Neuroscience 2018;368:132-51. [PMID: 28528964 DOI: 10.1016/j.neuroscience.2017.05.027] [Cited by in Crossref: 75] [Cited by in F6Publishing: 57] [Article Influence: 12.5] [Reference Citation Analysis]
70 Catalani E, De Palma C, Perrotta C, Cervia D. Current Evidence for a Role of Neuropeptides in the Regulation of Autophagy. Biomed Res Int 2017;2017:5856071. [PMID: 28593174 DOI: 10.1155/2017/5856071] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
71 Stengel A, Taché YF. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response. Front Neurosci 2017;11:231. [PMID: 28487631 DOI: 10.3389/fnins.2017.00231] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
72 Alherz F, Alherz M, Almusawi H. NMDAR hypofunction and somatostatin-expressing GABAergic interneurons and receptors: A newly identified correlation and its effects in schizophrenia. Schizophr Res Cogn 2017;8:1-6. [PMID: 28740825 DOI: 10.1016/j.scog.2017.02.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
73 Dehorter N, Marichal N, Marín O, Berninger B. Tuning neural circuits by turning the interneuron knob. Current Opinion in Neurobiology 2017;42:144-51. [DOI: 10.1016/j.conb.2016.12.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
74 Haidar M, Guèvremont G, Zhang C, Bathgate RAD, Timofeeva E, Smith CM, Gundlach AL. Relaxin-3 inputs target hippocampal interneurons and deletion of hilar relaxin-3 receptors in "floxed-RXFP3" mice impairs spatial memory. Hippocampus 2017;27:529-46. [PMID: 28100033 DOI: 10.1002/hipo.22709] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
75 Yavorska I, Wehr M. Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits. Front Neural Circuits. 2016;10:76. [PMID: 27746722 DOI: 10.3389/fncir.2016.00076] [Cited by in Crossref: 105] [Cited by in F6Publishing: 116] [Article Influence: 15.0] [Reference Citation Analysis]