BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tsai YL, Huang JJ, Pu SW, Chen HP, Hsu SC, Chang JY, Pei YC. Usability Assessment of a Cable-Driven Exoskeletal Robot for Hand Rehabilitation. Front Neurorobot 2019;13:3. [PMID: 30814945 DOI: 10.3389/fnbot.2019.00003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Zanatta F, Giardini A, Pierobon A, D'Addario M, Steca P. A systematic review on the usability of robotic and virtual reality devices in neuromotor rehabilitation: patients' and healthcare professionals' perspective. BMC Health Serv Res 2022;22:523. [PMID: 35443710 DOI: 10.1186/s12913-022-07821-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Rätz R, Conti F, Müri RM, Marchal-Crespo L. A Novel Clinical-Driven Design for Robotic Hand Rehabilitation: Combining Sensory Training, Effortless Setup, and Large Range of Motion in a Palmar Device. Front Neurorobot 2021;15:748196. [PMID: 34987371 DOI: 10.3389/fnbot.2021.748196] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 Li W, Xu D. Application of intelligent rehabilitation equipment in occupational therapy for enhancing upper limb function of patients in the whole phase of stroke. Medicine in Novel Technology and Devices 2021;12:100097. [DOI: 10.1016/j.medntd.2021.100097] [Reference Citation Analysis]
4 Alguacil-Diego IM, Cuesta-Gómez A, Contreras-González AF, Pont-Esteban D, Cantalejo-Escobar D, Sánchez-Urán MÁ, Ferre M. Validation of a Hybrid Exoskeleton for Upper Limb Rehabilitation. A Preliminary Study. Sensors (Basel) 2021;21:7342. [PMID: 34770647 DOI: 10.3390/s21217342] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Moreno-sanjuan V, Cisnal A, Fraile J, Pérez-turiel J, de-la-Fuente E. Design and characterization of a lightweight underactuated RACA hand exoskeleton for neurorehabilitation. Robotics and Autonomous Systems 2021;143:103828. [DOI: 10.1016/j.robot.2021.103828] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
6 La Bara LMA, Meloni L, Giusino D, Pietrantoni L. Assessment Methods of Usability and Cognitive Workload of Rehabilitative Exoskeletons: A Systematic Review. Applied Sciences 2021;11:7146. [DOI: 10.3390/app11157146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Proulx CE, Higgins J, Gagnon DH. Occupational therapists' evaluation of the perceived usability and utility of wearable soft robotic exoskeleton gloves for hand function rehabilitation following a stroke. Disabil Rehabil Assist Technol 2021;:1-10. [PMID: 34190657 DOI: 10.1080/17483107.2021.1938710] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Noronha B, Accoto D. Exoskeletal Devices for Hand Assistance and Rehabilitation: A Comprehensive Analysis of State-of-the-Art Technologies. IEEE Trans Med Robot Bionics 2021;3:525-38. [DOI: 10.1109/tmrb.2021.3064412] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
9 Ranzani R, Eicher L, Viggiano F, Engelbrecht B, Held JPO, Lambercy O, Gassert R. Towards a Platform for Robot-Assisted Minimally-Supervised Therapy of Hand Function: Design and Pilot Usability Evaluation. Front Bioeng Biotechnol 2021;9:652380. [PMID: 33937218 DOI: 10.3389/fbioe.2021.652380] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
10 Kim HK, Seong S, Park J, Kim J, Park J, Park W. Subjective Evaluation of the Effect of Exoskeleton Robots for Rehabilitation Training. IEEE Access 2021;9:130554-61. [DOI: 10.1109/access.2021.3112263] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Meyer JT, Dittli J, Stutz A, Lambercy O, Gassert R. A Method to Evaluate and Improve the Usability of a Robotic Hand Orthosis from the Caregiver Perspective. 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob) 2020. [DOI: 10.1109/biorob49111.2020.9224376] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Vigneshwari N, Rajeswari K, Jothimalar T, Sowmiya M. A Rehabilitation System to Assist Diplegia by Repetitive Exercise using LabVIEW. 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC) 2020. [DOI: 10.1109/b-htc50970.2020.9297857] [Reference Citation Analysis]
13 Wang Y, Wang K, Zhang Z. Design, comprehensive evaluation, and experimental study of a cable-driven parallel robot for lower limb rehabilitation. J Braz Soc Mech Sci Eng 2020;42:371. [DOI: 10.1007/s40430-020-02443-x] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
14 Ferguson PW, Shen Y, Rosen J. Hand Exoskeleton Systems—Overview. Wearable Robotics 2020. [DOI: 10.1016/b978-0-12-814659-0.00008-4] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
15 Abbasi Moshaii A, Mohammadi Moghaddam M, Dehghan Niestanak V. Fuzzy sliding mode control of a wearable rehabilitation robot for wrist and finger. IR 2019;46:839-50. [DOI: 10.1108/ir-05-2019-0110] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]