BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ouellet L, de Villers-Sidani E. Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex. Front Neuroanat 2014;8:40. [PMID: 24917792 DOI: 10.3389/fnana.2014.00040] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022;15:893111. [DOI: 10.3389/fnmol.2022.893111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Xue B, Kao JP, Kanold PO. Sex-specific age-related changes in excitatory and inhibitory intra-cortical circuits in mouse primary auditory cortex.. [DOI: 10.1101/2022.06.15.496332] [Reference Citation Analysis]
3 Rumschlag JA, Mcclaskey CM, Dias JW, Kerouac LB, Noble KV, Panganiban C, Lang H, Harris KC. Age-Related Central Gain with Degraded Neural Synchrony in the Auditory Brainstem of Mice and Humans. Neurobiology of Aging 2022. [DOI: 10.1016/j.neurobiolaging.2022.03.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Alreja A, Nemenman I, Rozell CJ. Constrained brain volume in an efficient coding model explains the fraction of excitatory and inhibitory neurons in sensory cortices. PLoS Comput Biol 2022;18:e1009642. [DOI: 10.1371/journal.pcbi.1009642] [Reference Citation Analysis]
5 Gonzalez-Ramos A, Waloschková E, Mikroulis A, Kokaia Z, Bengzon J, Ledri M, Andersson M, Kokaia M. Human stem cell-derived GABAergic neurons functionally integrate into human neuronal networks. Sci Rep 2021;11:22050. [PMID: 34764308 DOI: 10.1038/s41598-021-01270-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Herrmann B, Maess B, Johnsrude IS. A neural signature of regularity in sound is reduced in older adults. Neurobiol Aging 2021;109:1-10. [PMID: 34634748 DOI: 10.1016/j.neurobiolaging.2021.09.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Williams RH, Riedemann T. Development, Diversity, and Death of MGE-Derived Cortical Interneurons. Int J Mol Sci 2021;22:9297. [PMID: 34502208 DOI: 10.3390/ijms22179297] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
8 Chang M, Kanold PO. Development of Auditory Cortex Circuits. J Assoc Res Otolaryngol 2021;22:237-59. [PMID: 33909161 DOI: 10.1007/s10162-021-00794-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Herrmann B, Butler BE. Aging auditory cortex. Assessments, Treatments and Modeling in Aging and Neurological Disease 2021. [DOI: 10.1016/b978-0-12-818000-6.00017-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Dobri SGJ, Ross B. Total GABA level in human auditory cortex is associated with speech-in-noise understanding in older age. Neuroimage 2021;225:117474. [PMID: 33099004 DOI: 10.1016/j.neuroimage.2020.117474] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
11 Fazzari P, Mortimer N, Yabut O, Vogt D, Pla R. Cortical distribution of GABAergic interneurons is determined by migration time and brain size. Development 2020;147:dev185033. [PMID: 32586977 DOI: 10.1242/dev.185033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Ghimire M, Cai R, Ling L, Hackett TA, Caspary DM. Nicotinic Receptor Subunit Distribution in Auditory Cortex: Impact of Aging on Receptor Number and Function. J Neurosci 2020;40:5724-39. [PMID: 32541068 DOI: 10.1523/JNEUROSCI.0093-20.2020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
13 Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020;397:107976. [PMID: 32591097 DOI: 10.1016/j.heares.2020.107976] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
14 Cheng Y, Zhang Y, Wang F, Jia G, Zhou J, Shan Y, Sun X, Yu L, Merzenich MM, Recanzone GH, Yang L, Zhou X. Reversal of Age-Related Changes in Cortical Sound-Azimuth Selectivity with Training. Cereb Cortex 2020;30:1768-78. [PMID: 31504260 DOI: 10.1093/cercor/bhz201] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Maclaine KD, Llano DA. The Aging Central Auditory System. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-809324-5.24174-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Ibrahim BA, Llano DA. Aging and Central Auditory Disinhibition: Is It a Reflection of Homeostatic Downregulation or Metabolic Vulnerability? Brain Sci 2019;9:E351. [PMID: 31805729 DOI: 10.3390/brainsci9120351] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
17 Occelli F, Hasselmann F, Bourien J, Eybalin M, Puel J, Desvignes N, Wiszniowski B, Edeline J, Gourévitch B. Age-related Changes in Auditory Cortex Without Detectable Peripheral Alterations: A Multi-level Study in Sprague–Dawley Rats. Neuroscience 2019;404:184-204. [DOI: 10.1016/j.neuroscience.2019.02.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
18 Zimmer-bensch G. Functional Implications of Dynamic DNA Methylation for the Developing, Aging and Diseased Brain. RNA Technologies 2019. [DOI: 10.1007/978-3-030-14792-1_6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
19 Eggermont JJ. Animal Models of Auditory Aging. The Auditory Brain and Age-Related Hearing Impairment 2019. [DOI: 10.1016/b978-0-12-815304-8.00007-4] [Reference Citation Analysis]
20 Cisneros-Franco JM, Ouellet L, Kamal B, de Villers-Sidani E. A Brain without Brakes: Reduced Inhibition Is Associated with Enhanced but Dysregulated Plasticity in the Aged Rat Auditory Cortex. eNeuro 2018;5:ENEURO. [PMID: 30225357 DOI: 10.1523/ENEURO.0051-18.2018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
21 Opie GM, Sidhu SK, Rogasch NC, Ridding MC, Semmler JG. Cortical inhibition assessed using paired-pulse TMS-EEG is increased in older adults. Brain Stimulation 2018;11:545-57. [DOI: 10.1016/j.brs.2017.12.013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
22 Jayakody DMP, Friedland PL, Martins RN, Sohrabi HR. Impact of Aging on the Auditory System and Related Cognitive Functions: A Narrative Review. Front Neurosci 2018;12:125. [PMID: 29556173 DOI: 10.3389/fnins.2018.00125] [Cited by in Crossref: 81] [Cited by in F6Publishing: 85] [Article Influence: 20.3] [Reference Citation Analysis]
23 Henschke JU, Ohl FW, Budinger E. Crossmodal Connections of Primary Sensory Cortices Largely Vanish During Normal Aging. Front Aging Neurosci 2018;10:52. [PMID: 29551970 DOI: 10.3389/fnagi.2018.00052] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
24 Ding Y, Zheng Y, Liu T, Chen T, Wang C, Sun Q, Hua M, Hua T. Changes in GABAergic markers accompany degradation of neuronal function in the primary visual cortex of senescent rats. Sci Rep 2017;7:14897. [PMID: 29097694 DOI: 10.1038/s41598-017-15006-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
25 Naseri M, Parham A, Moghimi A. The effect of sodium thiopental as a GABA mimetic drug in neonatal period on expression of GAD65 and GAD67 genes in hippocampus of newborn and adult male rats. Iran J Basic Med Sci 2017;20:996-1001. [PMID: 29085593 DOI: 10.22038/IJBMS.2017.9264] [Reference Citation Analysis]
26 Voss P, Thomas ME, Cisneros-Franco JM, de Villers-Sidani É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front Psychol 2017;8:1657. [PMID: 29085312 DOI: 10.3389/fpsyg.2017.01657] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 13.8] [Reference Citation Analysis]
27 Rozycka A, Liguz-Lecznar M. The space where aging acts: focus on the GABAergic synapse. Aging Cell 2017;16:634-43. [PMID: 28497576 DOI: 10.1111/acel.12605] [Cited by in Crossref: 84] [Cited by in F6Publishing: 93] [Article Influence: 16.8] [Reference Citation Analysis]
28 Godfrey DA, Chen K, O'toole TR, Mustapha AI. Amino acid and acetylcholine chemistry in the central auditory system of young, middle-aged and old rats. Hearing Research 2017;350:173-88. [DOI: 10.1016/j.heares.2017.05.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
29 Cheng Y, Jia G, Zhang Y, Hao H, Shan Y, Yu L, Sun X, Zheng Q, Kraus N, Merzenich MM, Zhou X. Positive impacts of early auditory training on cortical processing at an older age. Proc Natl Acad Sci U S A 2017;114:6364-9. [PMID: 28559351 DOI: 10.1073/pnas.1707086114] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
30 Atapour N, Rosa MGP. Age-related plasticity of the axon initial segment of cortical pyramidal cells in marmoset monkeys. Neurobiol Aging 2017;57:95-103. [PMID: 28624616 DOI: 10.1016/j.neurobiolaging.2017.05.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
31 Brewton DH, Kokash J, Jimenez O, Pena ER, Razak KA. Age-Related Deterioration of Perineuronal Nets in the Primary Auditory Cortex of Mice. Front Aging Neurosci 2016;8:270. [PMID: 27877127 DOI: 10.3389/fnagi.2016.00270] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
32 Qiu LL, Luo D, Zhang H, Shi YS, Li YJ, Wu D, Chen J, Ji MH, Yang JJ. Nox-2-Mediated Phenotype Loss of Hippocampal Parvalbumin Interneurons Might Contribute to Postoperative Cognitive Decline in Aging Mice. Front Aging Neurosci 2016;8:234. [PMID: 27790135 DOI: 10.3389/fnagi.2016.00234] [Cited by in Crossref: 29] [Cited by in F6Publishing: 35] [Article Influence: 4.8] [Reference Citation Analysis]
33 Liguz-Lecznar M, Urban-Ciecko J, Kossut M. Somatostatin and Somatostatin-Containing Neurons in Shaping Neuronal Activity and Plasticity. Front Neural Circuits 2016;10:48. [PMID: 27445703 DOI: 10.3389/fncir.2016.00048] [Cited by in Crossref: 65] [Cited by in F6Publishing: 74] [Article Influence: 10.8] [Reference Citation Analysis]
34 Green DB, Ohlemacher J, Rosen MJ. Benefits of Stimulus Exposure: Developmental Learning Independent of Task Performance. Front Neurosci 2016;10:263. [PMID: 27378837 DOI: 10.3389/fnins.2016.00263] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
35 Overton JA, Recanzone GH. Effects of aging on the response of single neurons to amplitude-modulated noise in primary auditory cortex of rhesus macaque. J Neurophysiol 2016;115:2911-23. [PMID: 26936987 DOI: 10.1152/jn.01098.2015] [Cited by in Crossref: 39] [Cited by in F6Publishing: 45] [Article Influence: 6.5] [Reference Citation Analysis]
36 Novák O, Zelenka O, Hromádka T, Syka J. Immediate manifestation of acoustic trauma in the auditory cortex is layer specific and cell type dependent. J Neurophysiol 2016;115:1860-74. [PMID: 26823513 DOI: 10.1152/jn.00810.2015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
37 Voss P, Thomas M, Chou YC, Cisneros-Franco JM, Ouellet L, de Villers-Sidani E. Pairing Cholinergic Enhancement with Perceptual Training Promotes Recovery of Age-Related Changes in Rat Primary Auditory Cortex. Neural Plast 2016;2016:1801979. [PMID: 27057359 DOI: 10.1155/2016/1801979] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
38 Anomal RF, de Villers-Sidani E, Brandão JA, Diniz R, Costa MR, Romcy-Pereira RN. Impaired Processing in the Primary Auditory Cortex of an Animal Model of Autism. Front Syst Neurosci 2015;9:158. [PMID: 26635548 DOI: 10.3389/fnsys.2015.00158] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
39 Natan RG, Briguglio JJ, Mwilambwe-Tshilobo L, Jones SI, Aizenberg M, Goldberg EM, Geffen MN. Complementary control of sensory adaptation by two types of cortical interneurons. Elife 2015;4:e09868. [PMID: 26460542 DOI: 10.7554/eLife.09868] [Cited by in Crossref: 114] [Cited by in F6Publishing: 125] [Article Influence: 16.3] [Reference Citation Analysis]
40 Rigas P, Adamos DA, Sigalas C, Tsakanikas P, Laskaris NA, Skaliora I. Spontaneous Up states in vitro: a single-metric index of the functional maturation and regional differentiation of the cerebral cortex. Front Neural Circuits 2015;9:59. [PMID: 26528142 DOI: 10.3389/fncir.2015.00059] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
41 Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS, Koulu M. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015;67:872-1004. [DOI: 10.1124/pr.115.010967] [Cited by in Crossref: 96] [Cited by in F6Publishing: 101] [Article Influence: 13.7] [Reference Citation Analysis]
42 Burianová J, Ouda L, Syka J. The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats. Front Aging Neurosci 2015;7:27. [PMID: 25852543 DOI: 10.3389/fnagi.2015.00027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
43 Ouda L, Profant O, Syka J. Age-related changes in the central auditory system. Cell Tissue Res 2015;361:337-58. [DOI: 10.1007/s00441-014-2107-2] [Cited by in Crossref: 82] [Cited by in F6Publishing: 79] [Article Influence: 11.7] [Reference Citation Analysis]
44 Melgar-rojas P, Alvarado JC, Fuentes-santamaría V, Juiz JM. Cellular Mechanisms of Age-Related Hearing Loss. Free Radicals in ENT Pathology 2015. [DOI: 10.1007/978-3-319-13473-4_15] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]