BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Finelli MJ. Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions-Focus on S-Nitrosation. Front Aging Neurosci 2020;12:254. [PMID: 33088270 DOI: 10.3389/fnagi.2020.00254] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Kuczyńska M, Jakubek P, Bartoszek A. More than Just Antioxidants: Redox-Active Components and Mechanisms Shaping Redox Signalling Network. Antioxidants (Basel) 2022;11. [PMID: 36552611 DOI: 10.3390/antiox11122403] [Reference Citation Analysis]
2 Grintzalis K, Patsoukis N, Papapostolou I, Zervoudakis G, Kalaitzopoulou E, Georgiou CD, Matsokis NA, Panagopoulos NT. Alterations in thiol redox state and lipid peroxidation in the brain areas of male mice during aging. Advances in Redox Research 2022;6:100043. [DOI: 10.1016/j.arres.2022.100043] [Reference Citation Analysis]
3 Ene CD, Nicolae I. Hypoxia-Nitric Oxide Axis and the Associated Damage Molecular Pattern in Cutaneous Melanoma. J Pers Med 2022;12. [PMID: 36294785 DOI: 10.3390/jpm12101646] [Reference Citation Analysis]
4 Bittencourt LO, Matta PPM, Nascimento PC, Eiró-Quirino L, Aragão WAB, Dionizio A, Fernandes LMP, Silva MCF, Buzalaf MAR, Aschner M, Crespo-Lopez ME, Maia CSF, Lima RR. Deciphering the Global Proteomic Profile Involved in Methylmercury-Induced Cerebellar Neurodegeneration and Motor Dysfunction in Adult Rats. Toxics 2022;10:531. [PMID: 36136496 DOI: 10.3390/toxics10090531] [Reference Citation Analysis]
5 Sołtan M, Bartusik-aebisher D, Aebisher D. The potential of oxygen and nitrogen species-regulating drug delivery systems in medicine. Front Bioeng Biotechnol 2022;10:973080. [DOI: 10.3389/fbioe.2022.973080] [Reference Citation Analysis]
6 Bartolome F, Carro E, Alquezar C. Oxidative Stress in Tauopathies: From Cause to Therapy. Antioxidants 2022;11:1421. [DOI: 10.3390/antiox11081421] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Řimnáčová H, Moravec J, Štiavnická M, Havránková J, Monsef L, Hošek P, Prokešová Š, Žalmanová T, Fenclová T, Petr J, Králíčková M, Nevoral J. Evidence of endogenously produced hydrogen sulfide (H2S) and persulfidation in male reproduction. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-15360-x] [Reference Citation Analysis]
8 Clark JS, Kayed R, Abate G, Uberti D, Kinnon P, Piccirella S. Post-translational Modifications of the p53 Protein and the Impact in Alzheimer’s Disease: A Review of the Literature. Front Aging Neurosci 2022;14:835288. [DOI: 10.3389/fnagi.2022.835288] [Reference Citation Analysis]
9 Maruyama W, Shamoto-nagai M, Naoi M. Nutrition in Brain Aging: Its Relevance to Age-Associated Neurodegeneration. NeuroPsychopharmacotherapy 2022. [DOI: 10.1007/978-3-319-56015-1_20-1] [Reference Citation Analysis]
10 Fontiñan-rubio J, Peinado JR, Lindberg, Rabanal-ruiz Y. Molecular Principles, Components, Technology, and Concepts: Proteins – Posttranslational Modifications: Key Players in Health and Disease. Reference Module in Life Sciences 2022. [DOI: 10.1016/b978-0-12-821618-7.00093-6] [Reference Citation Analysis]
11 Maruyama W, Shamoto Nagai M, Naoi M. Nutrition in Brain Aging: Its Relevance to Age-Associated Neurodegeneration. NeuroPsychopharmacotherapy 2022. [DOI: 10.1007/978-3-030-62059-2_20] [Reference Citation Analysis]
12 Jennings EQ, Fritz KS, Galligan JJ. Biochemical genesis of enzymatic and non-enzymatic post-translational modifications. Mol Aspects Med 2021;:101053. [PMID: 34838336 DOI: 10.1016/j.mam.2021.101053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Mannan A, Germon ZP, Chamberlain J, Sillar JR, Nixon B, Dun MD. Reactive Oxygen Species in Acute Lymphoblastic Leukaemia: Reducing Radicals to Refine Responses. Antioxidants (Basel) 2021;10:1616. [PMID: 34679751 DOI: 10.3390/antiox10101616] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, Mumby S, Bhavsar PK, Chung KF. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med 2021;:101026. [PMID: 34625291 DOI: 10.1016/j.mam.2021.101026] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
15 Trstenjak Prebanda M, Matjan-Štefin P, Turk B, Kopitar-Jerala N. Altered Expression of Peroxiredoxins in Mouse Model of Progressive Myoclonus Epilepsy upon LPS-Induced Neuroinflammation. Antioxidants (Basel) 2021;10:357. [PMID: 33673502 DOI: 10.3390/antiox10030357] [Reference Citation Analysis]
16 Jagaraj CJ, Parakh S, Atkin JD. Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Front Cell Neurosci 2020;14:581950. [PMID: 33679322 DOI: 10.3389/fncel.2020.581950] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
17 Bastian P, Dulski J, Roszmann A, Jacewicz D, Kuban-Jankowska A, Slawek J, Wozniak M, Gorska-Ponikowska M. Regulation of Mitochondrial Dynamics in Parkinson's Disease-Is 2-Methoxyestradiol a Missing Piece? Antioxidants (Basel) 2021;10:248. [PMID: 33562035 DOI: 10.3390/antiox10020248] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
18 Bassot A, Chen J, Simmen T. Post-Translational Modification of Cysteines: A Key Determinant of Endoplasmic Reticulum-Mitochondria Contacts (MERCs). Contact 2021;4:251525642110012. [DOI: 10.1177/25152564211001213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]