BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brewton DH, Kokash J, Jimenez O, Pena ER, Razak KA. Age-Related Deterioration of Perineuronal Nets in the Primary Auditory Cortex of Mice. Front Aging Neurosci 2016;8:270. [PMID: 27877127 DOI: 10.3389/fnagi.2016.00270] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Xue B, Meng X, Kao JP, Kanold PO. Age-related changes in excitatory and inhibitory intra-cortical circuits in auditory cortex of C57Bl/6 mice. Hearing Research 2022. [DOI: 10.1016/j.heares.2022.108685] [Reference Citation Analysis]
2 Yim A, Smith C, Brown AM. Osteopontin/secreted phosphoprotein-1 harnesses glial-, immune-, and neuronal cell ligand-receptor interactions to sense and regulate acute and chronic neuroinflammation. Immunol Rev 2022;311:224-33. [PMID: 35451082 DOI: 10.1111/imr.13081] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
3 Xue B, Kao JP, Kanold PO. Sex-specific age-related changes in excitatory and inhibitory intra-cortical circuits in mouse primary auditory cortex.. [DOI: 10.1101/2022.06.15.496332] [Reference Citation Analysis]
4 Bishop R, Qureshi F, Yan J. Age-related changes in neuronal receptive fields of primary auditory cortex in frequency, amplitude, and temporal domains. Hearing Research 2022. [DOI: 10.1016/j.heares.2022.108504] [Reference Citation Analysis]
5 Zhao C, Chen Z, Liang W, Yang Z, Du Z, Gong S. D-Galactose-Induced Accelerated Aging Model on Auditory Cortical Neurons by Regulating Oxidative Stress and Apoptosis in Vitro. J Nutr Health Aging 2022;26:13-22. [PMID: 35067698 DOI: 10.1007/s12603-021-1721-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Rumschlag JA, Mcclaskey CM, Dias JW, Kerouac LB, Noble KV, Panganiban C, Lang H, Harris KC. Age-Related Central Gain with Degraded Neural Synchrony in the Auditory Brainstem of Mice and Humans. Neurobiology of Aging 2022. [DOI: 10.1016/j.neurobiolaging.2022.03.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Zinnamon FA, Harrison FG, Wenas SS, Liu Q, Wang KH, Linden JF. Increased central auditory gain and decreased parvalbumin-positive cortical interneuron density in the Df1/+ mouse model of schizophrenia correlate with hearing impairment. Biological Psychiatry Global Open Science 2022. [DOI: 10.1016/j.bpsgos.2022.03.007] [Reference Citation Analysis]
8 Li P, Bing D, Wang X, Chen J, Du Z, Sun Y, Qi F, Chu H. New Target of Oxidative Stress Regulation in Cochleae: Alternative Splicing of the p62/Sqstm1 Gene. J Mol Neurosci 2022. [PMID: 35048235 DOI: 10.1007/s12031-022-01969-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Logsdon AF, Francis KL, Richardson NE, Hu SJ, Faber CL, Phan BA, Nguyen V, Setthavongsack N, Banks WA, Woltjer RL, Keene CD, Latimer CS, Schwartz MW, Scarlett JM, Alonge KM. Decoding perineuronal net glycan sulfation patterns in the Alzheimer's disease brain. Alzheimers Dement 2021. [PMID: 34482642 DOI: 10.1002/alz.12451] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
10 Crapser JD, Arreola MA, Tsourmas KI, Green KN. Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cell Mol Immunol 2021;18:2472-88. [PMID: 34413489 DOI: 10.1038/s41423-021-00751-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
11 Miyata S. Structural and Functional Remodeling of the Extracellular Matrix during Brain Development and Aging. TIGG 2021;33:E79-84. [DOI: 10.4052/tigg.2003.1e] [Reference Citation Analysis]
12 Miyata S. Structural and Functional Remodeling of the Extracellular Matrix during Brain Development and Aging. TIGG 2021;33:J79-84. [DOI: 10.4052/tigg.2003.1j] [Reference Citation Analysis]
13 Wingert JC, Sorg BA. Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review. Front Synaptic Neurosci 2021;13:673210. [PMID: 34040511 DOI: 10.3389/fnsyn.2021.673210] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
14 Mafi AM, Russ MG, Hofer LN, Pham VQ, Young JW, Mellott JG. Inferior collicular cells that project to the auditory thalamus are increasingly surrounded by perineuronal nets with age. Neurobiol Aging 2021;105:1-15. [PMID: 34004491 DOI: 10.1016/j.neurobiolaging.2021.04.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Liu H, Peng H, Wang L, Xu P, Wang Z, Liu H, Wu H. Differences in Calcium Clearance at Inner Hair Cell Active Zones May Underlie the Difference in Susceptibility to Noise-Induced Cochlea Synaptopathy of C57BL/6J and CBA/CaJ Mice. Front Cell Dev Biol 2020;8:635201. [PMID: 33634111 DOI: 10.3389/fcell.2020.635201] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Sugitani K, Egorova D, Mizumoto S, Nishio S, Yamada S, Kitagawa H, Oshima K, Nadano D, Matsuda T, Miyata S. Hyaluronan degradation and release of a hyaluronan-aggrecan complex from perineuronal nets in the aged mouse brain. Biochim Biophys Acta Gen Subj 2021;1865:129804. [PMID: 33253804 DOI: 10.1016/j.bbagen.2020.129804] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
17 Park SS, Lee DH, Lee SM, Lee CH, Kim SY. Single-sided Deafness Leads to Changes in Vesicular Synaptic Transporters and Matrix Metalloproteinase 9 in the Primary Auditory Cortex. Neuroscience 2020;449:189-201. [PMID: 32976983 DOI: 10.1016/j.neuroscience.2020.09.032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
18 Lovelace JW, Ethell IM, Binder DK, Razak KA. Minocycline Treatment Reverses Sound Evoked EEG Abnormalities in a Mouse Model of Fragile X Syndrome. Front Neurosci 2020;14:771. [PMID: 32848552 DOI: 10.3389/fnins.2020.00771] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
19 Bowen Z, Winkowski DE, Kanold PO. Functional organization of mouse primary auditory cortex in adult C57BL/6 and F1 (CBAxC57) mice. Sci Rep 2020;10:10905. [PMID: 32616766 DOI: 10.1038/s41598-020-67819-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
20 Rogalla MM, Hildebrandt KJ. Aging But Not Age-Related Hearing Loss Dominates the Decrease of Parvalbumin Immunoreactivity in the Primary Auditory Cortex of Mice. eNeuro 2020;7:ENEURO. [PMID: 32327469 DOI: 10.1523/ENEURO.0511-19.2020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
21 Park SS, Lee DH, Lee SM, Lee CH, Kim SY. Noise exposure alters MMP9 and brevican expression in the rat primary auditory cortex. BMC Neurosci 2020;21:16. [PMID: 32334536 DOI: 10.1186/s12868-020-00567-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Yun-Mei Zhang, Zhen-Dong Yang, Ya-Feng Yu. Effect of neuregulin-1 on the auditory cortex in adult C57BL/6J mice. Iran J Basic Med Sci 2020;23. [PMID: 32440323 DOI: 10.22038/IJBMS.2020.33656.8026] [Reference Citation Analysis]
23 Mafi AM, Hofer LN, Russ MG, Young JW, Mellott JG. The Density of Perineuronal Nets Increases With Age in the Inferior Colliculus in the Fischer Brown Norway Rat. Front Aging Neurosci 2020;12:27. [PMID: 32116654 DOI: 10.3389/fnagi.2020.00027] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
24 Beebe NL, Sowick CS, Kristaponyte I, Galazyuk AV, Vetter DE, Cox BC, Schofield BR. Generation of a ChATCre mouse line without the early onset hearing loss typical of the C57BL/6J strain. Hear Res 2020;388:107896. [PMID: 31982642 DOI: 10.1016/j.heares.2020.107896] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Maclaine KD, Llano DA. The Aging Central Auditory System. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-809324-5.24174-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Wen TH, Afroz S, Reinhard SM, Palacios AR, Tapia K, Binder DK, Razak KA, Ethell IM. Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice. Cereb Cortex 2018;28:3951-64. [PMID: 29040407 DOI: 10.1093/cercor/bhx258] [Cited by in Crossref: 72] [Cited by in F6Publishing: 81] [Article Influence: 18.0] [Reference Citation Analysis]
27 Ibrahim BA, Llano DA. Aging and Central Auditory Disinhibition: Is It a Reflection of Homeostatic Downregulation or Metabolic Vulnerability? Brain Sci 2019;9:E351. [PMID: 31805729 DOI: 10.3390/brainsci9120351] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
28 Quraishe S, Newman T, Anderson L. Auditory temporal acuity improves with age in the male mouse auditory thalamus: A role for perineuronal nets? J Neurosci Res 2020;98:1780-99. [PMID: 31562661 DOI: 10.1002/jnr.24537] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
29 Liu H, Li G, Lu J, Gao YG, Song L, Li GL, Wu H. Cellular Differences in the Cochlea of CBA and B6 Mice May Underlie Their Difference in Susceptibility to Hearing Loss. Front Cell Neurosci 2019;13:60. [PMID: 30873008 DOI: 10.3389/fncel.2019.00060] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
30 Wen TH, Binder DK, Ethell IM, Razak KA. The Perineuronal 'Safety' Net? Perineuronal Net Abnormalities in Neurological Disorders. Front Mol Neurosci 2018;11:270. [PMID: 30123106 DOI: 10.3389/fnmol.2018.00270] [Cited by in Crossref: 75] [Cited by in F6Publishing: 85] [Article Influence: 15.0] [Reference Citation Analysis]
31 Namikawa M, Sano A, Tateno T. Salicylate-Induced Suppression of Electrically Driven Activity in Brain Slices from the Auditory Cortex of Aging Mice. Front Aging Neurosci 2017;9:395. [PMID: 29311894 DOI: 10.3389/fnagi.2017.00395] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
32 Nguyen A, Khaleel HM, Razak KA. Effects of noise-induced hearing loss on parvalbumin and perineuronal net expression in the mouse primary auditory cortex. Hear Res 2017;350:82-90. [PMID: 28460252 DOI: 10.1016/j.heares.2017.04.015] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
33 Tsukano H, Horie M, Ohga S, Takahashi K, Kubota Y, Hishida R, Takebayashi H, Shibuki K. Reconsidering Tonotopic Maps in the Auditory Cortex and Lemniscal Auditory Thalamus in Mice. Front Neural Circuits 2017;11:14. [PMID: 28293178 DOI: 10.3389/fncir.2017.00014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 17] [Article Influence: 0.8] [Reference Citation Analysis]