1 |
Lima C, Falcão MAP, Pinto FJ, Bernardo JTG, Lopes-ferreira M. The Anti-Inflammatory Peptide TnP Is a Candidate Molecule for Asthma Treatment. Cells 2023;12:924. [DOI: 10.3390/cells12060924] [Reference Citation Analysis]
|
2 |
Tubiana J, Adriana-Lifshits L, Nissan M, Gabay M, Sher I, Sova M, Wolfson HJ, Gal M. Funneling modulatory peptide design with generative models: Discovery and characterization of disruptors of calcineurin protein-protein interactions. PLoS Comput Biol 2023;19:e1010874. [PMID: 36730443 DOI: 10.1371/journal.pcbi.1010874] [Reference Citation Analysis]
|
3 |
Tufféry P, Derreumaux P. A refined pH-dependent coarse-grained model for peptide structure prediction in aqueous solution. Front Bioinform 2023;3:1113928. [PMID: 36727106 DOI: 10.3389/fbinf.2023.1113928] [Reference Citation Analysis]
|
4 |
Arabi-Jeshvaghani F, Javadi-Zarnaghi F, Ganjalikhany MR. Analysis of critical protein-protein interactions of SARS-CoV-2 capping and proofreading molecular machineries towards designing dual target inhibitory peptides. Sci Rep 2023;13:350. [PMID: 36611052 DOI: 10.1038/s41598-022-26778-8] [Reference Citation Analysis]
|
5 |
Tuffery P, Derreumaux P. A refined pH-dependent coarse-grained model for peptide structure prediction in aqueous solution.. [DOI: 10.1101/2022.12.20.521219] [Reference Citation Analysis]
|
6 |
Vivekanandan S, Vetrivel U, Hanna LE. Design of human immunodeficiency virus-1 neutralizing peptides targeting CD4-binding site: An integrative computational biologics approach. Front Med 2022;9. [DOI: 10.3389/fmed.2022.1036874] [Reference Citation Analysis]
|
7 |
Ajmal A, Ali Y, Khan A, Wadood A, Rehman AU. Identification of novel peptide inhibitors for the KRas-G12C variant to prevent oncogenic signaling. Journal of Biomolecular Structure and Dynamics 2022. [DOI: 10.1080/07391102.2022.2138550] [Reference Citation Analysis]
|
8 |
Fomo KN, Schmelter C, Atta J, Beutgen VM, Schwarz R, Perumal N, Govind G, Speck T, Pfeiffer N, Grus FH. Synthetic antibody-derived immunopeptide provides neuroprotection in glaucoma through molecular interaction with retinal protein histone H3.1. Front Med (Lausanne) 2022;9:993351. [PMID: 36313990 DOI: 10.3389/fmed.2022.993351] [Reference Citation Analysis]
|
9 |
Sánchez-navarro M, Giralt E. Peptide Shuttles for Blood–Brain Barrier Drug Delivery. Pharmaceutics 2022;14:1874. [DOI: 10.3390/pharmaceutics14091874] [Reference Citation Analysis]
|
10 |
Marassi V, Macis M, Giordani S, Ferrazzano L, Tolomelli A, Roda B, Zattoni A, Ricci A, Reschiglian P, Cabri W. Application of Af4-Multidetection to Liraglutide in Its Formulation: Preserving and Representing Native Aggregation. Molecules 2022;27:5485. [DOI: 10.3390/molecules27175485] [Reference Citation Analysis]
|
11 |
Apostolopoulos V, Bojarska J, Feehan J, Matsoukas J, Wolf W. Smart therapies against global pandemics: A potential of short peptides. Front Pharmacol 2022;13:914467. [DOI: 10.3389/fphar.2022.914467] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
12 |
Kosugi T, Ohue M. Solubility-Aware Protein Binding Peptide Design Using AlphaFold. Biomedicines 2022;10:1626. [DOI: 10.3390/biomedicines10071626] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Andrews BI, Kopach ME. Trimming Synthetic Peptide and Oligonucleotide Waste-Lines. Current Opinion in Green and Sustainable Chemistry 2022. [DOI: 10.1016/j.cogsc.2022.100643] [Reference Citation Analysis]
|
14 |
Masui H, Fuse S. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Org Process Res Dev 2022;26:1751-65. [DOI: 10.1021/acs.oprd.2c00074] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
15 |
Parra AL, Bezerra LP, Shawar DE, Neto NA, Mesquita FP, da Silva GO, Souza PF. Synthetic antiviral peptides: a new way to develop targeted antiviral drugs. Future Virology. [DOI: 10.2217/fvl-2021-0308] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Kosugi T, Ohue M. Solubility-aware protein binding peptide design using AlphaFold.. [DOI: 10.1101/2022.05.14.491955] [Reference Citation Analysis]
|
17 |
Ershov PV, Mezentsev YV, Ivanov AS. Interfacial Peptides as Affinity Modulating Agents of Protein-Protein Interactions. Biomolecules 2022;12:106. [DOI: 10.3390/biom12010106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
De Luca C, Lievore G, Bozza D, Buratti A, Cavazzini A, Ricci A, Macis M, Cabri W, Felletti S, Catani M. Downstream Processing of Therapeutic Peptides by Means of Preparative Liquid Chromatography. Molecules 2021;26:4688. [PMID: 34361839 DOI: 10.3390/molecules26154688] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
19 |
Mazzoccanti G, Manetto S, Bassan M, Macis M, Iazzetti A, Cabri W, Ricci A, Gasparrini F. Expanding the Use of Dynamic Electrostatic Repulsion Reversed-Phase Chromatography: An Effective Elution Mode for Peptides Control and Analysis. Molecules 2021;26:4348. [PMID: 34299626 DOI: 10.3390/molecules26144348] [Reference Citation Analysis]
|
20 |
Martelli G, Cantelmi P, Palladino C, Mattellone A, Corbisiero D, Fantoni T, Tolomelli A, Macis M, Ricci A, Cabri W, Ferrazzano L. Replacing piperidine in solid phase peptide synthesis: effective Fmoc removal by alternative bases. Green Chem 2021;23:8096-107. [DOI: 10.1039/d1gc02634h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|