BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020;7:193. [PMID: 32974385 DOI: 10.3389/fmolb.2020.00193] [Cited by in Crossref: 130] [Cited by in F6Publishing: 150] [Article Influence: 43.3] [Reference Citation Analysis]
Number Citing Articles
1 Dangi P, Chaudhary N, Chaudhary V, Virdi AS, Kajla P, Khanna P, Jha SK, Jha NK, Alkhanani MF, Singh V, Haque S. Nanotechnology impacting probiotics and prebiotics: a paradigm shift in nutraceuticals technology. Int J Food Microbiol 2023;388:110083. [PMID: 36708610 DOI: 10.1016/j.ijfoodmicro.2022.110083] [Reference Citation Analysis]
2 Abdulwahid FS, Haider AJ, Al-musawi S. Folate decorated dextran-coated magnetic nanoparticles for targeted delivery of ellipticine in cervical cancer cells. Adv Nat Sci: Nanosci Nanotechnol 2023;14:015001. [DOI: 10.1088/2043-6262/aca606] [Reference Citation Analysis]
3 Muthukutty P, Woo HY, Ragothaman M, Yoo SY. Recent Advances in Cancer Immunotherapy Delivery Modalities. Pharmaceutics 2023;15:504. [DOI: 10.3390/pharmaceutics15020504] [Reference Citation Analysis]
4 Jaiswal C, Gupta T, Jadi PK, Moses JC, Mandal BB. Injectable anti-cancer drug loaded silk-based hydrogel for the prevention of cancer recurrence and post-lumpectomy tissue regeneration aiding triple-negative breast cancer therapy. Biomater Adv 2023;145:213224. [PMID: 36516618 DOI: 10.1016/j.bioadv.2022.213224] [Reference Citation Analysis]
5 Yaray K, Norbakhsh A, Rashidzadeh H, Mohammadi A, Mozafari F, Ghaffarlou M, Mousazadeh N, Ghaderzadeh R, Ghorbani Y, Nasehi L, Danafar H, Nuri Ertas Y. Chemoradiation therapy of 4T1 cancer cells with methotrexate conjugated platinum nanoparticles under X-Ray irradiation. Inorganic Chemistry Communications 2023. [DOI: 10.1016/j.inoche.2023.110457] [Reference Citation Analysis]
6 Bhaladhare S, Bhattacharjee S. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review. Int J Biol Macromol 2023;226:535-53. [PMID: 36521697 DOI: 10.1016/j.ijbiomac.2022.12.076] [Reference Citation Analysis]
7 Koutu V, Gupta M, Das S, Rawat DK, Kharade V, Pasricha RK. Nanotechnology in Lung Cancer Therapeutics: A Narrative Review. Cureus 2023. [DOI: 10.7759/cureus.34245] [Reference Citation Analysis]
8 Hanna DH, El-Mazaly MH, Mohamed RR. Synthesis of biodegradable antimicrobial pH-sensitive silver nanocomposites reliant on chitosan and carrageenan derivatives for 5-fluorouracil drug delivery toward HCT116 cancer cells. Int J Biol Macromol 2023;:123364. [PMID: 36693607 DOI: 10.1016/j.ijbiomac.2023.123364] [Reference Citation Analysis]
9 Wang B, Qin Y, Liu J, Zhang Z, Li W, Pu G, Yuanhe Z, Gui X, Chu M. Magnetotactic Bacteria-Based Drug-Loaded Micromotors for Highly Efficient Magnetic and Biological Double-Targeted Tumor Therapy. ACS Appl Mater Interfaces 2023;15:2747-59. [PMID: 36607241 DOI: 10.1021/acsami.2c19960] [Reference Citation Analysis]
10 Jain N, Srinivasarao DA, Famta P, Shah S, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sci 2023;316:121399. [PMID: 36646378 DOI: 10.1016/j.lfs.2023.121399] [Reference Citation Analysis]
11 Nejabat M, Samie A, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. An Overview on Gold Nanorods as Versatile Nanoparticles in Cancer Therapy. J Control Release 2023;354:221-42. [PMID: 36621644 DOI: 10.1016/j.jconrel.2023.01.009] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Rani R, Malik P, Dhania S, Mukherjee TK. Recent Advances in Mesoporous Silica Nanoparticle-Mediated Drug Delivery for Breast Cancer Treatment. Pharmaceutics 2023;15. [PMID: 36678856 DOI: 10.3390/pharmaceutics15010227] [Reference Citation Analysis]
13 Manan FAA, Yusof NA, Abdullah J, Nurdin A. Central Composite Design for Optimization of Mitomycin C-Loaded Quantum Dots/Chitosan Nanoparticles as Drug Nanocarrier Vectors. Pharmaceutics 2023;15. [PMID: 36678837 DOI: 10.3390/pharmaceutics15010209] [Reference Citation Analysis]
14 George S, Martin JAJ, Graziani V, Sanz-Moreno V. Amoeboid migration in health and disease: Immune responses versus cancer dissemination. Front Cell Dev Biol 2022;10:1091801. [PMID: 36699013 DOI: 10.3389/fcell.2022.1091801] [Reference Citation Analysis]
15 Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Reference Citation Analysis]
16 Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. J Biomater Sci Polym Ed 2023;:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Reference Citation Analysis]
17 Chen J, Cong X. Surface-engineered nanoparticles in cancer immune response and immunotherapy: Current status and future prospects. Biomed Pharmacother 2023;157:113998. [PMID: 36399829 DOI: 10.1016/j.biopha.2022.113998] [Reference Citation Analysis]
18 Chakraborty A, Roy G, Swami B, Bhaskar S. Tumor targeted delivery of mycobacterial adjuvant encapsulated chitosan nanoparticles showed potential anti-cancer activity and immune cell activation in tumor microenvironment. Int Immunopharmacol 2023;114:109463. [PMID: 36462337 DOI: 10.1016/j.intimp.2022.109463] [Reference Citation Analysis]
19 Dewanjee S, Chakraborty P, Bhattacharya H, Singh SK, Dua K, Dey A, Jha NK. Recent advances in flavonoid-based nanocarriers as an emerging drug delivery approach for cancer chemotherapy. Drug Discov Today 2023;28:103409. [PMID: 36265733 DOI: 10.1016/j.drudis.2022.103409] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Napagoda M, Witharana S. Nanotechnology in Drug Delivery. Nanotechnology in Modern Medicine 2023. [DOI: 10.1007/978-981-19-8050-3_3] [Reference Citation Analysis]
21 Archana M, Sreekutty J, Syama H, Joseph MM, Anusree K, Unnikrishnan B, Preethi G, Reshma P, Sreelekha T. Polysaccharide guided tumor delivery of therapeutics: A bio-fabricated galactomannan-gold nanosystem for augmented cancer therapy. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104172] [Reference Citation Analysis]
22 Zomuansangi R, Singh BP, Singh G, Zothanpuia, Singh PK, Song JJ, Kharat AS, Deka P, Yadav MK. Role of nanoparticles in the treatment of human disease: a comprehensive review. Nanotechnology and Human Health 2023. [DOI: 10.1016/b978-0-323-90750-7.00008-9] [Reference Citation Analysis]
23 Zahedipour F, Majeed M, Kesharwani P, Sahebkar A. Cancer immunotherapy via nucleic acid aptamers. Aptamers Engineered Nanocarriers for Cancer Therapy 2023. [DOI: 10.1016/b978-0-323-85881-6.00003-8] [Reference Citation Analysis]
24 Mukherjee N, Dey S, Modak BK, Mukherjee S. Nanomaterials and Nanodevices for Treating Human Infectious and Inflammatory Diseases: Bane or Boon for Human Health? Next Generation Smart Nano-Bio-Devices 2023. [DOI: 10.1007/978-981-19-7107-5_7] [Reference Citation Analysis]
25 de Castro KC, Coco JC, Dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MHM, Prata J, da Fonte PRML, Severino P, Mazzola PG, Baby AR, Souto EB, de Araujo DR, Lopes AM. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release 2023;353:802-22. [PMID: 36521691 DOI: 10.1016/j.jconrel.2022.12.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Sondhi P, Lingden D, Bhattarai JK, Demchenko AV, Stine KJ. Applications of Nanoporous Gold in Therapy, Drug Delivery, and Diagnostics. Metals 2022;13:78. [DOI: 10.3390/met13010078] [Reference Citation Analysis]
27 Ali R, Balamurali M, Varamini P. Deep Learning-Based Artificial Intelligence to Investigate Targeted Nanoparticles' Uptake in TNBC Cells. Int J Mol Sci 2022;23. [PMID: 36555718 DOI: 10.3390/ijms232416070] [Reference Citation Analysis]
28 Singh DD, Lee HJ, Yadav DK. Clinical updates on tyrosine kinase inhibitors in HER2-positive breast cancer. Front Pharmacol 2022;13:1089066. [PMID: 36578543 DOI: 10.3389/fphar.2022.1089066] [Reference Citation Analysis]
29 Hamdy NM, Eskander G, Basalious EB. Insights on the Dynamic Innovative Tumor Targeted-Nanoparticles-Based Drug Delivery Systems Activation Techniques. IJN 2022;Volume 17:6131-6155. [DOI: 10.2147/ijn.s386037] [Reference Citation Analysis]
30 Li H, Xiao W, Tian Z, Liu Z, Shi L, Wang Y, Liu Y, Liu Y. Reaction mechanism of nanomedicine based on porphyrin skeleton and its application prospects. Photodiagnosis Photodyn Ther 2022;41:103236. [PMID: 36494023 DOI: 10.1016/j.pdpdt.2022.103236] [Reference Citation Analysis]
31 Shahriar SMS, Andrabi SM, Islam F, An JM, Schindler SJ, Matis MP, Lee DY, Lee YK. Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment. Pharmaceutics 2022;14. [PMID: 36559206 DOI: 10.3390/pharmaceutics14122712] [Reference Citation Analysis]
32 Yang K, Han W, Jiang X, Piffko A, Bugno J, Han C, Li S, Liang H, Xu Z, Zheng W, Wang L, Wang J, Huang X, Ting JPY, Fu YX, Lin W, Weichselbaum RR. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration. Nat Nanotechnol 2022;17:1322-31. [PMID: 36302963 DOI: 10.1038/s41565-022-01225-x] [Reference Citation Analysis]
33 Barui S, Percivalle NM, Conte M, Dumontel B, Racca L, Carofiglio M, Cauda V. Development of doped ZnO-based biomimicking and tumor-targeted nanotheranostics to improve pancreatic cancer treatment. Cancer Nano 2022;13:37. [DOI: 10.1186/s12645-022-00140-z] [Reference Citation Analysis]
34 Rodrigues CF, Fernandes N, de Melo-Diogo D, Correia IJ, Moreira AF. Cell-Derived Vesicles for Nanoparticles' Coating: Biomimetic Approaches for Enhanced Blood Circulation and Cancer Therapy. Adv Healthc Mater 2022;11:e2201214. [PMID: 36121767 DOI: 10.1002/adhm.202201214] [Reference Citation Analysis]
35 Iqubal MK, Kaur H, Md S, Alhakamy NA, Iqubal A, Ali J, Baboota S. A technical note on emerging combination approach involved in the onconanotherapeutics. Drug Deliv 2022;29:3197-212. [PMID: 36226570 DOI: 10.1080/10717544.2022.2132018] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Gharpure S, Ankamwar B. Albizia lebbeck-mediated ZnO phytosynthesis and their non-antimicrobial and biocompatibility studies. Appl Nanosci 2022. [DOI: 10.1007/s13204-022-02725-x] [Reference Citation Analysis]
37 Raghani RM, Ma JA, Zhang Y, Orbach SM, Wang J, Zeinali M, Nagrath S, Kakade S, Xu Q, Podojil JR, Murthy T, Elhofy A, Jeruss JS, Shea LD. Myeloid cell reprogramming alleviates immunosuppression and promotes clearance of metastatic lesions. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.1039993] [Reference Citation Analysis]
38 Ahmad A, Imran M, Sharma N. Precision Nanotoxicology in Drug Development: Current Trends and Challenges in Safety and Toxicity Implications of Customized Multifunctional Nanocarriers for Drug-Delivery Applications. Pharmaceutics 2022;14. [PMID: 36432653 DOI: 10.3390/pharmaceutics14112463] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Campos FL, de Alcântara Lemos J, Oda CMR, de Oliveira Silva J, Fernandes RS, Miranda SEM, Cavalcante CH, Cassali GD, Townsend DM, Leite EA, de Barros ALB. Irinotecan-Loaded Polymeric Micelles as a Promising Alternative to Enhance Antitumor Efficacy in Colorectal Cancer Therapy. Polymers (Basel) 2022;14. [PMID: 36433032 DOI: 10.3390/polym14224905] [Reference Citation Analysis]
40 Abo-zeid Y, Amer A, Bakkar MR, El-houssieny B, Sakran W. Antimicrobial Activity of Azithromycin Encapsulated into PLGA NPs: A Potential Strategy to Overcome Efflux Resistance. Antibiotics 2022;11:1623. [DOI: 10.3390/antibiotics11111623] [Reference Citation Analysis]
41 Soman S, Kulkarni S, Pandey A, Dhas N, Subramanian S, Mukherjee A, Mutalik S. 2D Hetero-Nanoconstructs of Black Phosphorus for Breast Cancer Theragnosis: Technological Advancements. Biosensors 2022;12:1009. [DOI: 10.3390/bios12111009] [Reference Citation Analysis]
42 Min HK, Kim SH, Kim HR, Lee SH. Therapeutic Utility and Adverse Effects of Biologic Disease-Modifying Anti-Rheumatic Drugs in Inflammatory Arthritis. Int J Mol Sci 2022;23. [PMID: 36430392 DOI: 10.3390/ijms232213913] [Reference Citation Analysis]
43 Ahmad Shariff SH, Wan Abdul Khodir WK, Abd Hamid S, Haris MS, Ismail MW. Poly(caprolactone)-b-poly(ethylene glycol)-Based Polymeric Micelles as Drug Carriers for Efficient Breast Cancer Therapy: A Systematic Review. Polymers (Basel) 2022;14. [PMID: 36432974 DOI: 10.3390/polym14224847] [Reference Citation Analysis]
44 Bakar-ates F, Sengel-turk CT. Lonidamine loaded Poly(ethylene glycol)–block–poly(ε-caprolacton) nanocarriers inhibited the proliferation of colorectal cancer cells through G0/G1 cell cycle arrest. Journal of Drug Delivery Science and Technology 2022;77:103853. [DOI: 10.1016/j.jddst.2022.103853] [Reference Citation Analysis]
45 Uddin N, Binzel DW, Shu D, Fu T, Guo P. Targeted delivery of RNAi to cancer cells using RNA-ligand displaying exosome. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.11.019] [Reference Citation Analysis]
46 Hsiao C, Huang H, Chen Y, Chen M, Lin Y. Enhanced antitumor effect of doxorubicin through active-targeted nanoparticles in doxorubicin-resistant triple-negative breast cancer. Journal of Drug Delivery Science and Technology 2022;77:103845. [DOI: 10.1016/j.jddst.2022.103845] [Reference Citation Analysis]
47 Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Ezra Manicum A, Rahdar A, Pandey S, Jadoun S, Díez-pascual AM. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103982] [Reference Citation Analysis]
48 Pillai AS, Manikantan V, Alexander A, Varalakshmi GS, Akash BA, Enoch IVMV. Designed dual-functional surface-modified copper-iron sulfide nanocarrier for anticancer drug delivery. Materials Today Communications 2022. [DOI: 10.1016/j.mtcomm.2022.104862] [Reference Citation Analysis]
49 Flores-contreras EA, González-gonzález RB, González-gonzález E, Parra-saldívar R, Iqbal HM. Nano-vehicles modulated delivery of therapeutic epigenetic regulators to treat Triple-Negative Breast Cancer. Journal of Drug Delivery Science and Technology 2022;77:103924. [DOI: 10.1016/j.jddst.2022.103924] [Reference Citation Analysis]
50 Jin Q, Pan Q. Nanoprodrugs encapsulated with mesoporous silica nanoparticles for combined with photothermal therapy for the treatment and care of gastric cancer. Mater Res Express 2022;9:115010. [DOI: 10.1088/2053-1591/ac9fad] [Reference Citation Analysis]
51 Shewaiter MA, Selim AA, Moustafa YM, Gad S, Rashed HM. Radioiodinated acemetacin loaded niosomes as a dual anticancer therapy. International Journal of Pharmaceutics 2022;628:122345. [DOI: 10.1016/j.ijpharm.2022.122345] [Reference Citation Analysis]
52 Gupta A, Gupta GS. Applications of mannose-binding lectins and mannan glycoconjugates in nanomedicine. J Nanopart Res 2022;24:228. [DOI: 10.1007/s11051-022-05594-1] [Reference Citation Analysis]
53 Agnihotri TG, Gomte SS, Jain A. Emerging theranostics to combat cancer: a perspective on metal-based nanomaterials. Drug Dev Ind Pharm 2022;48:585-601. [PMID: 36448770 DOI: 10.1080/03639045.2022.2153862] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Panjwani D, Mishra D, Patel S, Patel V, Dharamsi A, Patel A. A Perspective on EGFR and Proteasome-based Targeted Therapy for Cancer. Curr Drug Targets 2022;23:1406-17. [PMID: 36089785 DOI: 10.2174/1389450123666220908095121] [Reference Citation Analysis]
55 Peixoto FB, Raimundini Aranha AC, Nardino DA, Defendi RO, Suzuki RM. Extraction and encapsulation of bioactive compounds: A review. J Food Process Engineering. [DOI: 10.1111/jfpe.14167] [Reference Citation Analysis]
56 Damasio MPS, Nascimento CS, Andrade LM, de Oliveira VL, Calzavara-silva CE. The role of T-cells in head and neck squamous cell carcinoma: From immunity to immunotherapy. Front Oncol 2022;12:1021609. [DOI: 10.3389/fonc.2022.1021609] [Reference Citation Analysis]
57 Jangjou A, Zareshahrabadi Z, Abbasi M, Talaiekhozani A, Kamyab H, Chelliapan S, Vaez A, Golchin A, Tayebi L, Vafa E, Amani AM, Faramarzi H. Time to Conquer Fungal Infectious Diseases: Employing Nanoparticles as Powerful and Versatile Antifungal Nanosystems against a Wide Variety of Fungal Species. Sustainability 2022;14:12942. [DOI: 10.3390/su141912942] [Reference Citation Analysis]
58 Fernandes DS, Jayme CC, Matsuo FS, de Lima SCG, Fantacini DMC, de Souza LEB, Tedesco AC. The Selective Inhibitory Effect of Silver Nitroprusside Nanoparticles on Breast Tumor Growth.. [DOI: 10.21203/rs.3.rs-2113732/v1] [Reference Citation Analysis]
59 Mir SA, Hamid L, Bader GN, Shoaib A, Rahamathulla M, Alshahrani MY, Alam P, Shakeel F. Role of Nanotechnology in Overcoming the Multidrug Resistance in Cancer Therapy: A Review. Molecules 2022;27:6608. [PMID: 36235145 DOI: 10.3390/molecules27196608] [Reference Citation Analysis]
60 Repotente EC, Carreon AJ, Devanadera MK, Esmalla MS, Santiago-bautista M. Cytotoxic potential on human breast and lung cancer cells of the biosynthesized gold nanoparticles from the reduction of chloroauric acid by lactic acid isolated from Lactobacillus acidophilus. Front Mater 2022;9:933749. [DOI: 10.3389/fmats.2022.933749] [Reference Citation Analysis]
61 Kalave S, Hegde N, Juvale K. Applications of Nanotechnology-based Approaches to Overcome Multi-drug Resistance in Cancer. Curr Pharm Des 2022;28:3140-57. [PMID: 35366765 DOI: 10.2174/1381612828666220401142300] [Reference Citation Analysis]
62 Dabhade P, Bagde A, Syed ZQ, Fulzele P. Utilization of Nanomaterials in Bioimaging and Cancer Theranostics. IOP Conf Ser : Mater Sci Eng 2022;1259:012047. [DOI: 10.1088/1757-899x/1259/1/012047] [Reference Citation Analysis]
63 Li S, Gao X. A combinational chemo-immune therapy using outer membrane vesicles for enhanced cancer therapy by RGD targeting. Nanomedicine: Nanotechnology, Biology and Medicine 2022. [DOI: 10.1016/j.nano.2022.102610] [Reference Citation Analysis]
64 Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022;189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
65 Haritha V, Gowri S, Janarthanan B, Faiyazuddin M, Karthikeyan C, Sharmila S. Biogenic synthesis of nickel oxide nanoparticles using Averrhoa bilimbi and investigation of its antibacterial, antidiabetic and cytotoxic properties. Inorganic Chemistry Communications 2022;144:109930. [DOI: 10.1016/j.inoche.2022.109930] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Kong C, Zhang S, Lei Q, Wu S. State-of-the-Art Advances of Nanomedicine for Diagnosis and Treatment of Bladder Cancer. Biosensors 2022;12:796. [DOI: 10.3390/bios12100796] [Reference Citation Analysis]
67 Mohammadi MD, Abbas F, Louis H, Afahanam LE, Gber TE. Intermolecular Interactions between Nitrosourea and Polyoxometalate compounds. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202202535] [Reference Citation Analysis]
68 Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01626-z] [Reference Citation Analysis]
69 Carrese B, Sanità G, Lamberti A. Nanoparticles Design for Theranostic Approach in Cancer Disease. Cancers 2022;14:4654. [DOI: 10.3390/cancers14194654] [Reference Citation Analysis]
70 Brindisi M, Curcio M, Frattaruolo L, Cirillo G, Leggio A, Rago V, Nicoletta FP, Cappello AR, Iemma F. CD44-targeted nanoparticles with GSH-responsive activity as powerful therapeutic agents against breast cancer. Int J Biol Macromol 2022;221:1491-503. [PMID: 36130642 DOI: 10.1016/j.ijbiomac.2022.09.157] [Reference Citation Analysis]
71 Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment. Int J Nanomedicine 2022;17:3933-66. [PMID: 36105620 DOI: 10.2147/IJN.S375229] [Reference Citation Analysis]
72 Ayana G, Ryu J, Choe SW. Ultrasound-Responsive Nanocarriers for Breast Cancer Chemotherapy. Micromachines (Basel) 2022;13:1508. [PMID: 36144131 DOI: 10.3390/mi13091508] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
73 Soares GA, Pereira GM, Romualdo GR, Biasotti GGA, Stoppa EG, Bakuzis AF, Baffa O, Barbisan LF, Miranda JRA. Biodistribution Profile of Magnetic Nanoparticles in Cirrhosis-Associated Hepatocarcinogenesis in Rats by AC Biosusceptometry. Pharmaceutics 2022;14:1907. [DOI: 10.3390/pharmaceutics14091907] [Reference Citation Analysis]
74 Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022;27:5730. [PMID: 36080493 DOI: 10.3390/molecules27175730] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
75 Kirbiyik B, Mazmanci B, Yarlilar ŞG, Uğur N, Ocakoğlu K. Tamoxifen Delivery to Breast Cancer Cells (MCF-7) Via Hydroxyapatite Microspheres. Eurasian J Bio Chem Sci 2022. [DOI: 10.46239/ejbcs.1040161] [Reference Citation Analysis]
76 Mossenta M, Busato D, Dal Bo M, Macor P, Toffoli G. Novel Nanotechnology Approaches to Overcome Drug Resistance in the Treatment of Hepatocellular Carcinoma: Glypican 3 as a Useful Target for Innovative Therapies. Int J Mol Sci 2022;23:10038. [PMID: 36077433 DOI: 10.3390/ijms231710038] [Reference Citation Analysis]
77 Han K, Sathiyaseelan A, Saravanakumar K, Wang M. Synthesis of Biomolecule Functionalized Biocompatible Silver Nanoparticles for Antioxidant and Antibacterial Applications. Coatings 2022;12:1292. [DOI: 10.3390/coatings12091292] [Reference Citation Analysis]
78 Siddiqi A, Rani M, Bansal P, Rizvi MMA. Renal cell carcinoma management: A step to nano-chemoprevention. Life Sci 2022;:120922. [PMID: 36058262 DOI: 10.1016/j.lfs.2022.120922] [Reference Citation Analysis]
79 Püsküllüoğlu M, Michalak I. An ocean of possibilities: a review of marine organisms as sources of nanoparticles for cancer care. Nanomedicine (Lond) 2022;17:1695-719. [PMID: 36562416 DOI: 10.2217/nnm-2022-0206] [Reference Citation Analysis]
80 dos Santos RB, Funguetto-ribeiro AC, Maciel TR, Fonseca DP, Favarin FR, Nogueira-librelotto DR, de Gomes MG, Nakamura TU, Rolim CMB, Haas SE. In vivo and in vitro per se effect evaluation of Polycaprolactone and Eudragit® RS100-based nanoparticles. Biomedicine & Pharmacotherapy 2022;153:113410. [DOI: 10.1016/j.biopha.2022.113410] [Reference Citation Analysis]
81 Noubissi Nzeteu GA, Gibbs BF, Kotnik N, Troja A, Bockhorn M, Meyer NH. Nanoparticle-based immunotherapy of pancreatic cancer. Front Mol Biosci 2022;9:948898. [DOI: 10.3389/fmolb.2022.948898] [Reference Citation Analysis]
82 Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 2022;27:5436. [DOI: 10.3390/molecules27175436] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
83 Sarvari P, Sarvari P, Ramírez-díaz I, Mahjoubi F, Rubio K. Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. IJMS 2022;23:9521. [DOI: 10.3390/ijms23179521] [Reference Citation Analysis]
84 Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. Nanomaterials 2022;12:2851. [DOI: 10.3390/nano12162851] [Reference Citation Analysis]
85 Bertozzi S, Corradetti B, Seriau L, Diaz Ñañez JA, Cedolini C, Fruscalzo A, Cesselli D, Cagnacci A, Londero AP. Nanotechnologies in Obstetrics and Cancer during Pregnancy: A Narrative Review. JPM 2022;12:1324. [DOI: 10.3390/jpm12081324] [Reference Citation Analysis]
86 Incocciati A, Bertuccini L, Boffi A, Macone A, Bonamore A. Unlocking the Treasure Box: The Role of HEPES Buffer in Disassembling an Uncommon Ferritin Nanoparticle. Separations 2022;9:222. [DOI: 10.3390/separations9080222] [Reference Citation Analysis]
87 Dhilip Kumar SS, Abrahamse H. Recent advances in the development of biocompatible nanocarriers and their cancer cell targeting efficiency in photodynamic therapy. Front Chem 2022;10:969809. [DOI: 10.3389/fchem.2022.969809] [Reference Citation Analysis]
88 Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Pouya Hadipour Moghaddam S, Ebrahimnejad F, Asare-Addo K, Nokhodchi A. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm 2022;625:122099. [PMID: 35961417 DOI: 10.1016/j.ijpharm.2022.122099] [Reference Citation Analysis]
89 Tolstik E, Gongalsky MB, Dierks J, Brand T, Pernecker M, Pervushin NV, Maksutova DE, Gonchar KA, Samsonova JV, Kopeina G, Sivakov V, Osminkina LA, Lorenz K. Raman and fluorescence micro-spectroscopy applied for the monitoring of sunitinib-loaded porous silicon nanocontainers in cardiac cells. Front Pharmacol 2022;13:962763. [DOI: 10.3389/fphar.2022.962763] [Reference Citation Analysis]
90 Cai L, Xu X, Chen W. The Current State of the Art in PARP Inhibitor-Based Delivery Nanosystems. Pharmaceutics 2022;14:1647. [DOI: 10.3390/pharmaceutics14081647] [Reference Citation Analysis]
91 Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. Nanomaterials 2022;12:2672. [DOI: 10.3390/nano12152672] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Fang T, Cao X, Ibnat M, Chen G. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnology 2022;20:354. [PMID: 35918694 DOI: 10.1186/s12951-022-01570-y] [Reference Citation Analysis]
93 Delle Donne R, Iannucci R, Rinaldi L, Roberto L, Oliva MA, Senatore E, Borzacchiello D, Lignitto L, Giurato G, Rizzo F, Sellitto A, Chiuso F, Castaldo S, Scala G, Campani V, Nele V, De Rosa G, D’ambrosio C, Garbi C, Scaloni A, Weisz A, Ambrosino C, Arcella A, Feliciello A. Targeted inhibition of ubiquitin signaling reverses metabolic reprogramming and suppresses glioblastoma growth. Commun Biol 2022;5. [DOI: 10.1038/s42003-022-03639-8] [Reference Citation Analysis]
94 Ashrafizadeh M, Aghamiri S, Tan SC, Zarrabi A, Sharifi E, Rabiee N, Kadumudi FB, Pirouz AD, Delfi M, Byrappa K, Thakur VK, Sharath Kumar KS, Girish YR, Zandsalimi F, Zare EN, Orive G, Tay F, Hushmandi K, Kumar AP, Karaman C, Karimi-maleh H, Mostafavi E, Makvandi P, Wang Y. Nanotechnological Approaches in Prostate Cancer Therapy: Integration of engineering and biology. Nano Today 2022;45:101532. [DOI: 10.1016/j.nantod.2022.101532] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
95 Roy R, Bhattacharya P, Borah A. Targeting the Pathological Hallmarks of Alzheimer's Disease Through Nanovesicleaided Drug Delivery Approach. Curr Drug Metab 2022;23:693-707. [PMID: 35619248 DOI: 10.2174/1389200223666220526094802] [Reference Citation Analysis]
96 Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.08.006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Rabizadeh T, Varshochian R, Mahdieh A, Rezaei M, Pazouki N, Zardkanlou M, Irani S, Dinarvand R. Teriflunomide Loaded SPION Nanoparticles Induced Apoptosis in MDA-MB-231 Breast Cancer Cells. J Clust Sci. [DOI: 10.1007/s10876-022-02327-1] [Reference Citation Analysis]
98 Nayak A, Warrier NM, Kumar P. Cancer Stem Cells and the Tumor Microenvironment: Targeting the Critical Crosstalk through Nanocarrier Systems. Stem Cell Rev Rep 2022. [PMID: 35876959 DOI: 10.1007/s12015-022-10426-9] [Reference Citation Analysis]
99 George BP, Chota A, Sarbadhikary P, Abrahamse H. Fundamentals and applications of metal nanoparticle- enhanced singlet oxygen generation for improved cancer photodynamic therapy. Front Chem 2022;10:964674. [DOI: 10.3389/fchem.2022.964674] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Jiao Y, Tang Y, Li Y, Liu C, He J, Zhang LK, Guan YQ. Tumor cell-derived extracellular vesicles for breast cancer specific delivery of therapeutic P53. J Control Release 2022;349:606-16. [PMID: 35870568 DOI: 10.1016/j.jconrel.2022.07.020] [Reference Citation Analysis]
101 Thangudu S, Huang EY, Su CH. Safe magnetic resonance imaging on biocompatible nanoformulations. Biomater Sci 2022. [PMID: 35858468 DOI: 10.1039/d2bm00692h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Karimi Z, Taymouri S, Minaiyan M, Mirian M. Evaluation of thermosensitive chitosan hydrogel containing gefitinib loaded cellulose acetate butyrate nanoparticles in a subcutaneous breast cancer model. Int J Pharm 2022;624:122036. [PMID: 35868480 DOI: 10.1016/j.ijpharm.2022.122036] [Reference Citation Analysis]
103 Karthick V, Kumar Shrestha L, Kumar VG, Pranjali P, Kumar D, Pal A, Ariga K. Nanoarchitectonics horizons: materials for life sciences. Nanoscale 2022. [PMID: 35842941 DOI: 10.1039/d2nr02293a] [Reference Citation Analysis]
104 Haghighattalab M, Kajbafzadeh A, Baghani M, Gharehnazifam Z, Jobani BM, Baniassadi M. Silk Fibroin Hydrogel Reinforced With Magnetic Nanoparticles as an Intelligent Drug Delivery System for Sustained Drug Release. Front Bioeng Biotechnol 2022;10:891166. [DOI: 10.3389/fbioe.2022.891166] [Reference Citation Analysis]
105 Marzhoseyni Z, Shayestehpour M, Salimian M, Esmaeili D, Saffari M, Fathizadeh H. Designing a novel fusion protein from Streptococcus agalactiae with apoptosis induction effects on cervical cancer cells. Microb Pathog 2022;169:105670. [PMID: 35809755 DOI: 10.1016/j.micpath.2022.105670] [Reference Citation Analysis]
106 Lee SE, Lee CM, Won JE, Jang G, Lee JH, Park SH, Kang TH, Han HD, Park Y. Enhancement of anticancer immunity by immunomodulation of apoptotic tumor cells using annexin A5 protein-labeled nanocarrier system. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Côrte-real L, Brás AR, Pilon A, Mendes N, Ribeiro AS, Martins TD, Farinha JPS, Oliveira MC, Gärtner F, Garcia MH, Preto A, Valente A. Biotinylated Polymer-Ruthenium Conjugates: In Vitro and In Vivo Studies in a Triple-Negative Breast Cancer Model. Pharmaceutics 2022;14:1388. [DOI: 10.3390/pharmaceutics14071388] [Reference Citation Analysis]
108 Rampado R, Biccari A, D'Angelo E, Collino F, Cricrì G, Caliceti P, Giordano F, Taraballi F, Pucciarelli S, Agostini M. Optimization of Biomimetic, Leukocyte-Mimicking Nanovesicles for Drug Delivery Against Colorectal Cancer Using a Design of Experiment Approach. Front Bioeng Biotechnol 2022;10:883034. [PMID: 35757799 DOI: 10.3389/fbioe.2022.883034] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
109 Rana N. Nano Particle-Based Targeted Drug Delivery for Effective Treatment of Cancer Disease. Handbook of Research on Advanced Phytochemicals and Plant-Based Drug Discovery 2022. [DOI: 10.4018/978-1-6684-5129-8.ch022] [Reference Citation Analysis]
110 Ali AF, Alrowaili ZA, Ahmed AAM, El-kady AM. Processing and Characterization of Gallium-Modified Bioactive Glass Nanoparticles for Controlled Delivery of 5-Fluorouracil and Vitamin D3: an Advanced Approach to Osteoporosis and Bone cancer Treatment. Silicon. [DOI: 10.1007/s12633-022-01957-4] [Reference Citation Analysis]
111 Acter S, Jahan N, Vidallon MLP, Teo BM, Tabor RF. Mesoporous Polydopamine Nanobowls Toward Combined Chemo‐ and Photothermal Cancer Therapy. Part & Part Syst Charact. [DOI: 10.1002/ppsc.202200015] [Reference Citation Analysis]
112 Grin M, Suvorov N, Ostroverkhov P, Pogorilyy V, Kirin N, Popov A, Sazonova A, Filonenko E. Advantages of combined photodynamic therapy in the treatment of oncological diseases. Biophys Rev. [DOI: 10.1007/s12551-022-00962-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Sánchez-morales A, Biçer A, Panagiotopoulos V, Crecente-garcia S, Benaiges C, Bayod S, Luís Hernández J, Busqué F, Matsoukas M, Pérez-riba M, Alibés R. Design and synthesis of a novel non peptide CN-NFATc signaling inhibitor for tumor suppression in triple negative breast cancer. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114514] [Reference Citation Analysis]
114 Guo Y, Shen Y, Yu B, Ding L, Meng Z, Wang X, Han M, Dong Z, Wang X. Hydrophilic Poly(glutamic acid)-Based Nanodrug Delivery System: Structural Influence and Antitumor Efficacy. Polymers (Basel) 2022;14:2242. [PMID: 35683914 DOI: 10.3390/polym14112242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Chiang MC, Nicol CJB. GSH-AuNP anti-oxidative stress, ER stress and mitochondrial dysfunction in amyloid-beta peptide-treated human neural stem cells. Free Radic Biol Med 2022:S0891-5849(22)00219-2. [PMID: 35660451 DOI: 10.1016/j.freeradbiomed.2022.05.025] [Reference Citation Analysis]
116 Agrohia DK, Wu P, Huynh U, Thayumanavan S, Vachet RW. Multiplexed Analysis of the Cellular Uptake of Polymeric Nanocarriers. Anal Chem 2022. [PMID: 35612963 DOI: 10.1021/acs.analchem.2c00648] [Reference Citation Analysis]
117 Terán-navarro H, Zeoli A, Salines-cuevas D, Marradi M, Montoya N, Gonzalez-lopez E, Ocejo-vinyals JG, Dominguez-esteban M, Gutierrez-baños JL, Campos-juanatey F, Yañez-diaz S, Garcia-castaño A, Rivera F, Duran I, Alvarez-dominguez C. Gold Glyconanoparticles Combined with 91–99 Peptide of the Bacterial Toxin, Listeriolysin O, Are Efficient Immunotherapies in Experimental Bladder Tumors. Cancers 2022;14:2413. [DOI: 10.3390/cancers14102413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
118 Poonaki E, Nickel AC, Shafiee Ardestani M, Rademacher L, Kaul M, Apartsin E, Meuth SG, Gorji A, Janiak C, Kahlert UD. CD133-Functionalized Gold Nanoparticles as a Carrier Platform for Telaglenastat (CB-839) against Tumor Stem Cells. Int J Mol Sci 2022;23:5479. [PMID: 35628289 DOI: 10.3390/ijms23105479] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
119 Naki T, Aderibigbe BA. Efficacy of Polymer-Based Nanomedicine for the Treatment of Brain Cancer. Pharmaceutics 2022;14:1048. [DOI: 10.3390/pharmaceutics14051048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
120 Lu M, Huang X, Cai X, Sun J, Liu X, Weng L, Zhu L, Luo Q, Chen Z. Hypoxia-Responsive Stereocomplex Polymeric Micelles with Improved Drug Loading Inhibit Breast Cancer Metastasis in an Orthotopic Murine Model. ACS Appl Mater Interfaces 2022;14:20551-65. [PMID: 35476401 DOI: 10.1021/acsami.1c23737] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Lv B, Ma J, Wang Y, Qu X, Qiu J, Hua K. Mitochondria-Targeted Mesoporous Organic Silica Nanoplatforms for Overcoming Cisplatin Resistance by Disturbing Mitochondrial Redox Homeostasis. Front Chem 2022;10:875818. [DOI: 10.3389/fchem.2022.875818] [Reference Citation Analysis]
122 Pitchika S, Sahoo SK. Paclitaxel and Lapatinib dual loaded chitosan-coated PLGA nanoparticles enhance cytotoxicity by circumventing MDR1-mediated trastuzumab resistance in HER2 positive breast cancers: In-vitro and in-vivo studies. Journal of Drug Delivery Science and Technology 2022;73:103445. [DOI: 10.1016/j.jddst.2022.103445] [Reference Citation Analysis]
123 Al-zahrani SA, Bhat RS, Al-onazi MA, Alwhibi MS, Soliman DA, Aljebrin NA, Al-suhaibani LS, Al Daihan S. Anticancer potential of biogenic silver nanoparticles using the stem extract of Commiphora gileadensis against human colon cancer cells. Green Processing and Synthesis 2022;11:435-44. [DOI: 10.1515/gps-2022-0042] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
124 Fahira AI, Amalia R, Barliana MI, Gatera VA, Abdulah R. Polyethyleneimine (PEI) as a Polymer-Based Co-Delivery System for Breast Cancer Therapy. Breast Cancer (Dove Med Press) 2022;14:71-83. [PMID: 35422657 DOI: 10.2147/BCTT.S350403] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
125 Pandey M, Choudhury H, Ying JNS, Ling JFS, Ting J, Ting JSS, Zhia Hwen IK, Suen HW, Samsul Kamar HS, Gorain B, Jain N, Mohd Amin MCI. Mucoadhesive Nanocarriers as a Promising Strategy to Enhance Intracellular Delivery against Oral Cavity Carcinoma. Pharmaceutics 2022;14:795. [DOI: 10.3390/pharmaceutics14040795] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Nejati K, Rastegar M, Fathi F, Dadashpour M, Arabzadeh A. Nanoparticle-based drug delivery systems to overcome gastric cancer drug resistance. Journal of Drug Delivery Science and Technology 2022;70:103231. [DOI: 10.1016/j.jddst.2022.103231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
127 Chen X, Yung LL, Tan PH, Bay BH. Harnessing the Immunogenic Potential of Gold Nanoparticle-Based Platforms as a Therapeutic Strategy in Breast Cancer Immunotherapy: A Mini Review. Front Immunol 2022;13:865554. [DOI: 10.3389/fimmu.2022.865554] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Burdușel A, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022;14:770. [DOI: 10.3390/pharmaceutics14040770] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
129 Janani B, Vijayakumar M, Priya K, Kim JH, Prabakaran DS, Shahid M, Al-ghamdi S, Alsaidan M, Othman Bahakim N, Hassan Abdelzaher M, Ramesh T. EGFR-Based Targeted Therapy for Colorectal Cancer—Promises and Challenges. Vaccines 2022;10:499. [DOI: 10.3390/vaccines10040499] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
130 Kaushik N, Borkar SB, Nandanwar SK, Panda PK, Choi EH, Kaushik NK. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J Nanobiotechnology 2022;20:152. [PMID: 35331246 DOI: 10.1186/s12951-022-01364-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
131 Hsieh PH, Huang WY, Wang HC, Kuan CH, Shiue TY, Chen Y, Wang TW. Dual-responsive polypeptide nanoparticles attenuate tumor-associated stromal desmoplasia and anticancer through programmable dissociation. Biomaterials 2022;284:121469. [PMID: 35344799 DOI: 10.1016/j.biomaterials.2022.121469] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
132 Perini G, Rosa E, Friggeri G, Di Pietro L, Barba M, Parolini O, Ciasca G, Moriconi C, Papi M, De Spirito M, Palmieri V. INSIDIA 2.0 High-Throughput Analysis of 3D Cancer Models: Multiparametric Quantification of Graphene Quantum Dots Photothermal Therapy for Glioblastoma and Pancreatic Cancer. Int J Mol Sci 2022;23:3217. [PMID: 35328638 DOI: 10.3390/ijms23063217] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
133 Ding Y, Wang Y, Hu Q. Recent advances in overcoming barriers to cell‐based delivery systems for cancer immunotherapy. Exploration. [DOI: 10.1002/exp.20210106] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 20.0] [Reference Citation Analysis]
134 Shueng P, Yu L, Hou H, Chiu H, Lo C. Charge Conversion Polymer–Liposome Complexes to Overcome the Limitations of Cationic Liposomes in Mitochondrial-Targeting Drug Delivery. IJMS 2022;23:3080. [DOI: 10.3390/ijms23063080] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
135 Garg J, Nee Chiu M, Krishnan S, Kumar Tripathi L, Pandit S, Farasati Far B, Kumar Jha N, Kumar Kesari K, Tripathi V, Pandey S, Kumar Gupta P. Applications of lignin nanoparticles for cancer drug delivery: An update. Materials Letters 2022;311:131573. [DOI: 10.1016/j.matlet.2021.131573] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
136 Tang X, Li X, Sun Z. Green Supported Cu nanoparticles on modified Fe3O4 nanoparticles using Thymbra spicata flower extract: Investigation of its antioxidant and the anti-human lung cancer properties. Arabian Journal of Chemistry 2022. [DOI: 10.1016/j.arabjc.2022.103816] [Reference Citation Analysis]
137 Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022;23:2408. [PMID: 35269550 DOI: 10.3390/ijms23052408] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
138 Sobierajska P, Serwotka-Suszczak A, Targonska S, Szymanski D, Marycz K, Wiglusz RJ. Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform-Physicochemical Properties and In Vitro Studies on Mastocytoma Cells. Int J Mol Sci 2022;23:1944. [PMID: 35216060 DOI: 10.3390/ijms23041944] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
139 Vincent MP, Navidzadeh JO, Bobbala S, Scott EA. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell 2022:S1535-6108(22)00008-3. [PMID: 35148814 DOI: 10.1016/j.ccell.2022.01.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
140 Haider M, Elsherbeny A, Pittalà V, Consoli V, Alghamdi MA, Hussain Z, Khoder G, Greish K. Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. IJMS 2022;23:1853. [DOI: 10.3390/ijms23031853] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
141 Yan W, Lang T, Zhu R, Zhu X, Li Y, Wu T, Yin Q, Li Y. Anti-hypoxia nanosized drug delivery systems improving cancer therapy. Nano Today 2022;42:101376. [DOI: 10.1016/j.nantod.2022.101376] [Reference Citation Analysis]
142 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
143 Zhou F, Zhu H, Fu C. Editorial: Clinical Therapeutic Development Against Cancers Resistant to Targeted Therapies. Front Pharmacol 2021;12:816896. [PMID: 35095531 DOI: 10.3389/fphar.2021.816896] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials 2022;12:457. [DOI: 10.3390/nano12030457] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 51.0] [Reference Citation Analysis]
145 Lin Y, Liu J, Chang Y, Yu C, Yi W, Lane H, Lu C. Predicting Anticancer Drug Resistance Mediated by Mutations. Pharmaceuticals 2022;15:136. [DOI: 10.3390/ph15020136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
146 Karpuz M, İlhan M, Gültekin HE, Ozgenc E, Şenyiğit Z, Atlihan-gundogdu E. Nanovesicles for tumor-targeted drug delivery. Applications of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91865-7.00017-1] [Reference Citation Analysis]
147 Truong LB, Cruz DM, Barabadi H, Vahidi H, Mostafavi E. Cancer therapeutics with microbial nanotechnology-based approaches. Handbook of Microbial Nanotechnology 2022. [DOI: 10.1016/b978-0-12-823426-6.00004-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
148 Poornima DV, Pratap GK, Vadlapudi K, Vishala E. Green Nanoparticles in Drug Delivery of Cancer Therapy, Biomedical Applications. Encyclopedia of Green Materials 2022. [DOI: 10.1007/978-981-16-4921-9_150-1] [Reference Citation Analysis]
149 Sharifi E, Bigham A, Yousefiasl S, Trovato M, Ghomi M, Esmaeili Y, Samadi P, Zarrabi A, Ashrafizadeh M, Sharifi S, Sartorius R, Dabbagh Moghaddam F, Maleki A, Song H, Agarwal T, Maiti TK, Nikfarjam N, Burvill C, Mattoli V, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L, Makvandi P. Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli-Responsive, Toxicity, Immunogenicity, and Clinical Translation. Adv Sci (Weinh) 2022;9:e2102678. [PMID: 34796680 DOI: 10.1002/advs.202102678] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 30.0] [Reference Citation Analysis]
150 Cui L, Quagliarini E, Xiao S, Giulimondi F, Renzi S, Digiacomo L, Caracciolo G, Wang J, Amici A, Marchini C, Pozzi D. The protein corona reduces the anticancer effect of graphene oxide in HER-2-positive cancer cells. Nanoscale Adv . [DOI: 10.1039/d2na00308b] [Reference Citation Analysis]
151 Dwivedi N, Saha P. Uncovering the limitation of nanodrug delivery system: Backdrop to the game changer. Advances in Nanotechnology-Based Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-323-88450-1.00006-5] [Reference Citation Analysis]
152 Rout SR, Gowtham K, Sheikh A, Parvez S, Dandela R, Kesharwani P. Recent advances and future prospective of hybrid drug delivery systems. Hybrid Nanomaterials for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-85754-3.00006-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
153 Liang W, Dong Y, Shao R, Zhang S, Wu X, Huang X, Sun B, Zeng B, Zhao J. Application of Nanoparticles in Drug Delivery for the Treatment of Osteosarcoma: Focusing on the Liposomes. J Drug Target 2021;:1-39. [PMID: 34962448 DOI: 10.1080/1061186X.2021.2023160] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
154 Sunoqrot S, Orainee B, Alqudah DA, Daoud F, Alshaer W. Curcumin-tannic acid-poloxamer nanoassemblies enhance curcumin's uptake and bioactivity against cancer cells in vitro. Int J Pharm 2021;610:121255. [PMID: 34737014 DOI: 10.1016/j.ijpharm.2021.121255] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
155 Yadav A, Singh S, Sohi H, Dang S. Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment. AAPS PharmSciTech 2021;23:25. [PMID: 34907501 DOI: 10.1208/s12249-021-02174-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
156 Ibrahim SRM, Altyar AE, Sindi IA, El-Agamy DS, Abdallah HM, Mohamed SGA, Mohamed GA. Kirenol: A promising bioactive metabolite from siegesbeckia species: A detailed review. J Ethnopharmacol 2021;281:114552. [PMID: 34438028 DOI: 10.1016/j.jep.2021.114552] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
157 Geyik G, Işıklan N. Design and fabrication of hybrid triple-responsive κ-carrageenan-based nanospheres for controlled drug delivery. Int J Biol Macromol 2021;192:701-15. [PMID: 34637816 DOI: 10.1016/j.ijbiomac.2021.10.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
158 Caro C, Avasthi A, Paez-Muñoz JM, Pernia Leal M, García-Martín ML. Passive targeting of high-grade gliomas via the EPR effect: a closed path for metallic nanoparticles? Biomater Sci 2021;9:7984-95. [PMID: 34710207 DOI: 10.1039/d1bm01398j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
159 Nguyen PV, Hervé-Aubert K, Chourpa I, Allard-Vannier E. Active targeting strategy in nanomedicines using anti-EGFR ligands - A promising approach for cancer therapy and diagnosis. Int J Pharm 2021;609:121134. [PMID: 34571073 DOI: 10.1016/j.ijpharm.2021.121134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
160 Wijewantha N, Eikanger MM, Antony RM, Potts RA, Rezvani K, Sereda G. Targeting Colon Cancer Cells with Enzyme-Triggered Casein-Gated Release of Cargo from Mesoporous Silica-Based Nanoparticles. Bioconjug Chem 2021;32:2353-65. [PMID: 34672618 DOI: 10.1021/acs.bioconjchem.1c00416] [Reference Citation Analysis]
161 Dhilip Kumar SS, Abrahamse H. Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021;13:1933. [PMID: 34834348 DOI: 10.3390/pharmaceutics13111933] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
162 Halder J, Pradhan D, Kar B, Ghosh G, Rath G. Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. Nanomedicine 2021;:102494. [PMID: 34775061 DOI: 10.1016/j.nano.2021.102494] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
163 Mohapatra A, Sathiyamoorthy P, Park IK. Metallic Nanoparticle-Mediated Immune Cell Regulation and Advanced Cancer Immunotherapy. Pharmaceutics 2021;13:1867. [PMID: 34834282 DOI: 10.3390/pharmaceutics13111867] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
164 McFadden M, Singh SK, Oprea-Ilies G, Singh R. Nano-Based Drug Delivery and Targeting to Overcome Drug Resistance of Ovarian Cancers. Cancers (Basel) 2021;13:5480. [PMID: 34771642 DOI: 10.3390/cancers13215480] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
165 Bharadwaj KK, Rabha B, Pati S, Sarkar T, Choudhury BK, Barman A, Bhattacharjya D, Srivastava A, Baishya D, Edinur HA, Abdul Kari Z, Mohd Noor NH. Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules 2021;26:6389. [PMID: 34770796 DOI: 10.3390/molecules26216389] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
166 Tinajero-Díaz E, Salado-Leza D, Gonzalez C, Martínez Velázquez M, López Z, Bravo-Madrigal J, Knauth P, Flores-Hernández FY, Herrera-Rodríguez SE, Navarro RE, Cabrera-Wrooman A, Krötzsch E, Carvajal ZYG, Hernández-Gutiérrez R. Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications. Pharmaceutics 2021;13:1719. [PMID: 34684012 DOI: 10.3390/pharmaceutics13101719] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
167 Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select. [DOI: 10.1002/nano.202100255] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
168 Seitz I, Shaukat A, Nurmi K, Ijäs H, Hirvonen J, Santos HA, Kostiainen MA, Linko V. Prospective Cancer Therapies Using Stimuli-Responsive DNA Nanostructures. Macromol Biosci 2021;21:e2100272. [PMID: 34614301 DOI: 10.1002/mabi.202100272] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
169 Wang N, Qi F, He X, Shi H, Anderson DW, Li H, Sun H. Preparation and Pharmacokinetic Characterization of an Anti-Virulence Compound Nanosuspensions. Pharmaceutics 2021;13:1586. [PMID: 34683879 DOI: 10.3390/pharmaceutics13101586] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
170 Olawale F, Ariatti M, Singh M. Biogenic Synthesis of Silver-Core Selenium-Shell Nanoparticles Using Ocimum tenuiflorum L.: Response Surface Methodology-Based Optimization and Biological Activity. Nanomaterials (Basel) 2021;11:2516. [PMID: 34684956 DOI: 10.3390/nano11102516] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
171 Borzęcka W, Domiński A, Kowalczuk M. Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. Nanomaterials (Basel) 2021;11:2426. [PMID: 34578740 DOI: 10.3390/nano11092426] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
172 Sattari S, Adeli M, Beyranvand S, Nemati M. Functionalized Graphene Platforms for Anticancer Drug Delivery. Int J Nanomedicine 2021;16:5955-80. [PMID: 34511900 DOI: 10.2147/IJN.S249712] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
173 Satija S, Sharma P, Kaur H, Dhanjal DS, Chopra RS, Khurana N, Vyas M, Sharma N, Tambuwala MM, Bakshi HA, Charbe NB, Zacconi FC, Chellappan DK, Dua K, Mehta M. Perfluorocarbons therapeutics in modern cancer nanotechnology for hypoxia-induced anti-tumor therapy. Curr Pharm Des 2021. [PMID: 34459378 DOI: 10.2174/1381612827666210830100907] [Reference Citation Analysis]
174 Mishra N. Nanoparticulate Carriers for the treatment of Infectious Diseases and Cancer. Curr Mol Pharmacol 2021;14:261-2. [PMID: 34433396 DOI: 10.2174/187446721403210706114224] [Reference Citation Analysis]
175 Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. α-Mangostin Nanoparticles Cytotoxicity and Cell Death Modalities in Breast Cancer Cell Lines. Molecules 2021;26:5119. [PMID: 34500560 DOI: 10.3390/molecules26175119] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
176 Onishchenko A, Myasoedov V, Yefimova S, Nakonechna O, Prokopyuk V, Butov D, Kökbaş U, Klochkov V, Maksimchuk P, Kavok N, Tkachenko A. UV Light-Activated GdYVO4:Eu3+ Nanoparticles Induce Reactive Oxygen Species Generation in Leukocytes Without Affecting Erythrocytes In Vitro. Biol Trace Elem Res 2021. [PMID: 34386912 DOI: 10.1007/s12011-021-02867-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
177 Fröhlich E, Wahl R. Nanoparticles: Promising Auxiliary Agents for Diagnosis and Therapy of Thyroid Cancers. Cancers (Basel) 2021;13:4063. [PMID: 34439219 DOI: 10.3390/cancers13164063] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
178 Lôbo GCNB, Paiva KLR, Silva ALG, Simões MM, Radicchi MA, Báo SN. Nanocarriers Used in Drug Delivery to Enhance Immune System in Cancer Therapy. Pharmaceutics 2021;13:1167. [PMID: 34452128 DOI: 10.3390/pharmaceutics13081167] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
179 Chadar R, Afsana, Kesharwani P. Nanotechnology-based siRNA delivery strategies for treatment of triple negative breast cancer. Int J Pharm 2021;605:120835. [PMID: 34197908 DOI: 10.1016/j.ijpharm.2021.120835] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
180 Ahmad RS, Eubank TD, Lukomski S, Boone BA. Immune Cell Modulation of the Extracellular Matrix Contributes to the Pathogenesis of Pancreatic Cancer. Biomolecules 2021;11:901. [PMID: 34204306 DOI: 10.3390/biom11060901] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
181 Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021;16:3937-99. [PMID: 34140768 DOI: 10.2147/IJN.S298606] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
182 Khan MA, Singh D, Ahmad A, Siddique HR. Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. Eur J Pharm Sci 2021;164:105892. [PMID: 34052295 DOI: 10.1016/j.ejps.2021.105892] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
183 Beha MJ, Ryu JS, Kim YS, Chung HJ. Delivery of antisense oligonucleotides using multi-layer coated gold nanoparticles to methicillin-resistant S. aureus for combinatorial treatment. Mater Sci Eng C Mater Biol Appl 2021;126:112167. [PMID: 34082968 DOI: 10.1016/j.msec.2021.112167] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
184 Gote V, Nookala AR, Bolla PK, Pal D. Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021;22:4673. [PMID: 33925129 DOI: 10.3390/ijms22094673] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
185 Veloso SRS, Andrade RGD, Castanheira EMS. Magnetoliposomes: recent advances in the field of controlled drug delivery. Expert Opin Drug Deliv 2021;:1-12. [PMID: 33836636 DOI: 10.1080/17425247.2021.1915983] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
186 Wang H, Zhou Y, Sun Q, Zhou C, Hu S, Lenahan C, Xu W, Deng Y, Li G, Tao S. Update on Nanoparticle-Based Drug Delivery System for Anti-inflammatory Treatment. Front Bioeng Biotechnol 2021;9:630352. [PMID: 33681167 DOI: 10.3389/fbioe.2021.630352] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
187 Lou J, Zhou Y, Feng Z, Ma M, Yao Y, Wang Y, Deng Y, Wu Y. Caspase-Independent Regulated Necrosis Pathways as Potential Targets in Cancer Management. Front Oncol 2020;10:616952. [PMID: 33665167 DOI: 10.3389/fonc.2020.616952] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
188 Zhou Y, Wang Y, Chen H, Xu Y, Luo Y, Deng Y, Zhang J, Shao A. Immuno-oncology: are TAM receptors in glioblastoma friends or foes? Cell Commun Signal 2021;19:11. [PMID: 33509214 DOI: 10.1186/s12964-020-00694-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
189 Ni N, Su Y, Wei Y, Ma Y, Zhao L, Sun X. Tuning Nanosiliceous Framework for Enhanced Cancer Theranostic Applications. Adv Therap 2021;4:2000218. [DOI: 10.1002/adtp.202000218] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
190 Datkhile KD, Patil SR, Durgawale PP, Patil MN, Hinge DD, Jagdale NJ, Deshmukh VN, More AL. Biogenic synthesis of gold nanoparticles using Argemone mexicana L. and their cytotoxic and genotoxic effects on human colon cancer cell line (HCT-15). J Genet Eng Biotechnol 2021;19:9. [PMID: 33443619 DOI: 10.1186/s43141-020-00113-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
191 Roma-Rodrigues C, Pombo I, Fernandes AR, Baptista PV. Hyperthermia Induced by Gold Nanoparticles and Visible Light Photothermy Combined with Chemotherapy to Tackle Doxorubicin Sensitive and Resistant Colorectal Tumor 3D Spheroids. Int J Mol Sci 2020;21:E8017. [PMID: 33126535 DOI: 10.3390/ijms21218017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
192 Colone M, Calcabrini A, Stringaro A. Drug Delivery Systems of Natural Products in Oncology. Molecules 2020;25:E4560. [PMID: 33036240 DOI: 10.3390/molecules25194560] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]