1 |
Lu L, Li Y, Ao X, Huang J, Liu B, Wu L, Li D. The risk of COVID-19 can be predicted by a nomogram based on m6A-related genes. Infect Genet Evol 2022;106:105389. [PMID: 36460278 DOI: 10.1016/j.meegid.2022.105389] [Reference Citation Analysis]
|
2 |
Liu Z, Meng M, Ding S, Zhou X, Feng K, Huang T, Cai Y. Identification of methylation signatures and rules for predicting the severity of SARS-CoV-2 infection with machine learning methods. Front Microbiol 2022;13:1007295. [DOI: 10.3389/fmicb.2022.1007295] [Reference Citation Analysis]
|
3 |
Lai G, Liu H, Deng J, Li K, Xie B. A Novel 3-Gene Signature for Identifying COVID-19 Patients Based on Bioinformatics and Machine Learning. Genes 2022;13:1602. [DOI: 10.3390/genes13091602] [Reference Citation Analysis]
|
4 |
Chen M, Ma Y, Chang W. SARS-CoV-2 and the Nucleus. Int J Biol Sci 2022;18:4731-43. [PMID: 35874947 DOI: 10.7150/ijbs.72482] [Reference Citation Analysis]
|
5 |
Duan C, Ma R, Zeng X, Chen B, Hou D, Liu R, Li X, Liu L, Li T, Huang H. SARS-CoV-2 Achieves Immune Escape by Destroying Mitochondrial Quality: Comprehensive Analysis of the Cellular Landscapes of Lung and Blood Specimens From Patients With COVID-19. Front Immunol 2022;13:946731. [DOI: 10.3389/fimmu.2022.946731] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
6 |
Batista-roche JL, Gómez-gil B, Lund G, Berlanga-robles CA, García-gasca A. Global m6A RNA Methylation in SARS-CoV-2 Positive Nasopharyngeal Samples in a Mexican Population: A First Approximation Study. Epigenomes 2022;6:16. [DOI: 10.3390/epigenomes6030016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Li X, Ma S, Deng Y, Yi P, Yu J. Targeting the RNA m6A modification for cancer immunotherapy. Mol Cancer 2022;21:76. [PMID: 35296338 DOI: 10.1186/s12943-022-01558-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
|