BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vallée A, Lecarpentier Y, Vallée JN. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front Immunol 2021;12:666693. [PMID: 33927728 DOI: 10.3389/fimmu.2021.666693] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Mortezaei Z, Hosseini N. Cardio-Oncology and the COVID-19 Pandemic. Cardiovascular Diseases [Working Title] 2023. [DOI: 10.5772/intechopen.109520] [Reference Citation Analysis]
2 Zhu J, Wilding JP, Hu J. Adipocytes in obesity: A perfect reservoir for SARS-CoV-2? Medical Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111020] [Reference Citation Analysis]
3 Taheri G, Habibi M. Comprehensive analysis of pathways in Coronavirus 2019 (COVID-19) using an unsupervised machine learning method. Appl Soft Comput 2022;128:109510. [PMID: 35992221 DOI: 10.1016/j.asoc.2022.109510] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Vallee A, Lecarpentier Y, Vallée JN. WNT/β-catenin pathway and circadian rhythms in obsessive-compulsive disorder. Neural Regen Res 2022;17:2126-30. [PMID: 35259818 DOI: 10.4103/1673-5374.332133] [Reference Citation Analysis]
5 Zhao X, Wu X, Xiao J, Zhang L, Hao Y, Xiao C, Zhang B, Li J, Jiang X. Are female-specific cancers long-term sequelae of COVID-19? Evidence from a large-scale genome-wide cross-trait analysis.. [DOI: 10.1101/2022.08.25.22279195] [Reference Citation Analysis]
6 Khan AA, Jain SK, Rai M, Panda S. Exploring SARS-CoV2 host-pathogen interactions and associated fungal infections cross-talk: Screening of targets and understanding pathogenesis. Comput Struct Biotechnol J 2022;20:4351-9. [PMID: 35965662 DOI: 10.1016/j.csbj.2022.08.013] [Reference Citation Analysis]
7 Wang M, Yu B, Wang J, Wang Y, Liang L. Exploring the role of Xingren on COVID ‐19 based on network pharmacology and molecular docking. Journal of Food Biochemistry. [DOI: 10.1111/jfbc.14363] [Reference Citation Analysis]
8 Veronesi F, Contartese D, Martini L, Visani A, Fini M. Speculation on the pathophysiology of musculoskeletal injury with COVID-19 infection. Front Med 2022;9. [DOI: 10.3389/fmed.2022.930789] [Reference Citation Analysis]
9 Huoman J, Sayyab S, Apostolou E, Karlsson L, Porcile L, Rizwan M, Sharma S, Das J, Rosén A, Lerm M. Epigenetic rewiring of pathways related to odour perception in immune cells exposed to SARS-CoV-2 in vivo and in vitro. Epigenetics 2022;:1-17. [PMID: 35758003 DOI: 10.1080/15592294.2022.2089471] [Reference Citation Analysis]
10 Li H, You J, Yang X, Wei Y, Zheng L, Zhao Y, Huang Y, Jin Z, Yi C. Glycyrrhetinic acid: A potential drug for the treatment of COVID-19 cytokine storm. Phytomedicine 2022;102:154153. [PMID: 35636166 DOI: 10.1016/j.phymed.2022.154153] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
11 Vallée A. Cannabidiol and SARS-CoV-2 Infection. Front Immunol 2022;13:870787. [DOI: 10.3389/fimmu.2022.870787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 You H, Zhao Q, Dong M. The Key Genes Underlying Pathophysiology Correlation Between the Acute Myocardial Infarction and COVID-19. IJGM 2022;Volume 15:2479-90. [DOI: 10.2147/ijgm.s354885] [Reference Citation Analysis]
13 Fantacuzzi M, Amoroso R, Ammazzalorso A. PPAR Ligands Induce Antiviral Effects Targeting Perturbed Lipid Metabolism during SARS-CoV-2, HCV, and HCMV Infection. Biology (Basel) 2022;11:114. [PMID: 35053112 DOI: 10.3390/biology11010114] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Synowiec A, Jedrysik M, Branicki W, Klajmon A, Lei J, Owczarek K, Suo C, Szczepanski A, Wang J, Zhang P, Labaj PP, Pyrc K. Identification of Cellular Factors Required for SARS-CoV-2 Replication. Cells 2021;10:3159. [PMID: 34831382 DOI: 10.3390/cells10113159] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Gugliandolo A, Chiricosta L, Calcaterra V, Biasin M, Cappelletti G, Carelli S, Zuccotti G, Avanzini MA, Bramanti P, Pelizzo G, Mazzon E. SARS-CoV-2 Infected Pediatric Cerebral Cortical Neurons: Transcriptomic Analysis and Potential Role of Toll-like Receptors in Pathogenesis. Int J Mol Sci 2021;22:8059. [PMID: 34360824 DOI: 10.3390/ijms22158059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
16 Huoman J, Sayyab S, Apostolou E, Karlsson L, Porcile L, Rizwan M, Sharma S, Das J, Rosén A, Lerm M. Epigenome-wide DNA methylation profiling of healthy COVID-19 recoverees reveals a unique signature in circulating immune cells.. [DOI: 10.1101/2021.07.05.21260014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Lecarpentier Y, Vallée A. The key role of the level of ACE2 gene expression in SARS-CoV-2 infection. Aging (Albany NY) 2021;13:14552-6. [PMID: 34115612 DOI: 10.18632/aging.203181] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]