1 |
Watowich MB, Gilbert MR, Larion M. T cell exhaustion in malignant gliomas. Trends Cancer 2023:S2405-8033(22)00282-5. [PMID: 36681605 DOI: 10.1016/j.trecan.2022.12.008] [Reference Citation Analysis]
|
2 |
Park J, Hsueh PC, Li Z, Ho PC. Microenvironment-driven metabolic adaptations guiding CD8(+) T cell anti-tumor immunity. Immunity 2023;56:32-42. [PMID: 36630916 DOI: 10.1016/j.immuni.2022.12.008] [Reference Citation Analysis]
|
3 |
Yang L, Zhang W, Sun J, Yang G, Cai S, Sun F, Xing L, Sun X. Functional status and spatial interaction of T cell subsets driven by specific tumor microenvironment correlate with recurrence of non-small cell lung cancer. Front Immunol 2022;13:1022638. [PMID: 36685566 DOI: 10.3389/fimmu.2022.1022638] [Reference Citation Analysis]
|
4 |
Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol 2022;19:775-90. [PMID: 36216928 DOI: 10.1038/s41571-022-00689-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 19.0] [Reference Citation Analysis]
|
5 |
Cunha PP, Minogue E, Krause LCM, Hess RM, Bargiela D, Wadsworth BJ, Barbieri L, Brombach C, Foskolou IP, Bogeski I, Veliça P, Johnson RS. Oxygen levels at the time of activation determine T cell persistence and immunotherapeutic efficacy.. [DOI: 10.1101/2022.11.25.517976] [Reference Citation Analysis]
|
6 |
Mao W. Overcoming current challenges to T-cell receptor therapy via metabolic targeting to increase antitumor efficacy, durability, and tolerability. Front Immunol 2022;13:1056622. [PMID: 36479131 DOI: 10.3389/fimmu.2022.1056622] [Reference Citation Analysis]
|
7 |
Kawaguchi K, Maeshima Y, Toi M. Tumor immune microenvironment and systemic response in breast cancer. Med Oncol 2022;39:208. [PMID: 36175677 DOI: 10.1007/s12032-022-01782-0] [Reference Citation Analysis]
|
8 |
Li T, Qiao T. Unraveling tumor microenvironment of small-cell lung cancer: implications for immunotherapy. Semin Cancer Biol 2022:S1044-579X(22)00202-4. [PMID: 36183998 DOI: 10.1016/j.semcancer.2022.09.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Cheng W, Xiao X, Liao Y, Cao Q, Wang C, Li X, Jia Y. Conducive target range of breast cancer: Hypoxic tumor microenvironment. Front Oncol 2022;12:978276. [DOI: 10.3389/fonc.2022.978276] [Reference Citation Analysis]
|
10 |
Zhang L, Zhang B, Li L, Ye Y, Wu Y, Yuan Q, Xu W, Wen X, Guo X, Nian S. Novel targets for immunotherapy associated with exhausted CD8 + T cells in cancer. J Cancer Res Clin Oncol. [DOI: 10.1007/s00432-022-04326-1] [Reference Citation Analysis]
|
11 |
Hu J, Hu W, Yang Y, Granito A. Hypoxia Confers Tumor with a Higher Immune Infiltration but Lower Mutation Burden in Gastrointestinal Cancer. Journal of Oncology 2022;2022:1-9. [DOI: 10.1155/2022/4965167] [Reference Citation Analysis]
|
12 |
Zhang J, Wu X, Ma J, Long K, Sun J, Li M, Ge L. Hypoxia and hypoxia-inducible factor signals regulate the development, metabolism, and function of B cells. Front Immunol 2022;13:967576. [DOI: 10.3389/fimmu.2022.967576] [Reference Citation Analysis]
|
13 |
Holley JM, Stanbouly S, Pecaut MJ, Willey JS, Delp M, Mao XW. Characterization of gene expression profiles in the mouse brain after 35 days of spaceflight mission. NPJ Microgravity 2022;8:35. [PMID: 35948598 DOI: 10.1038/s41526-022-00217-4] [Reference Citation Analysis]
|
14 |
Wicks EE, Semenza GL. Hypoxia-inducible factors: cancer progression and clinical translation. J Clin Invest 2022;132:e159839. [PMID: 35642641 DOI: 10.1172/JCI159839] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
|
15 |
Castillo-rodríguez RA, Trejo-solís C, Cabrera-cano A, Gómez-manzo S, Dávila-borja VM. Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers 2022;14:2291. [DOI: 10.3390/cancers14092291] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
16 |
Wei J, Hu M, Du H. Improving Cancer Immunotherapy: Exploring and Targeting Metabolism in Hypoxia Microenvironment. Front Immunol 2022;13:845923. [PMID: 35281061 DOI: 10.3389/fimmu.2022.845923] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
17 |
Hong S, Yuan Q, Xia H, Dou Y, Sun T, Xie T, Zhang Z, He W, Dong C, Lu J, Guo L, Ni L. Establishment of an Ex Vivo Tissue Culture Model for Evaluation of Antitumor Efficacy in Clear Cell Renal Cell Carcinoma. Front Oncol 2022;12:851191. [PMID: 35463322 DOI: 10.3389/fonc.2022.851191] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
18 |
Mortezaee K, Majidpoor J. (Im)maturity in Tumor Ecosystem. Front Oncol 2022;11:813897. [DOI: 10.3389/fonc.2021.813897] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
|
19 |
Zheng Z, Bian C, Wang H, Su J, Meng L, Xin Y, Jiang X. Prediction of immunotherapy efficacy and immunomodulatory role of hypoxia in colorectal cancer. Ther Adv Med Oncol 2022;14:175883592211383. [DOI: 10.1177/17588359221138383] [Reference Citation Analysis]
|
20 |
Mortezaee K, Majidpoor J. The impact of hypoxia on immune state in cancer. Life Sci 2021;286:120057. [PMID: 34662552 DOI: 10.1016/j.lfs.2021.120057] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
|
21 |
Laderach DJ, Compagno D. Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure. Cancers (Basel) 2021;13:4529. [PMID: 34572756 DOI: 10.3390/cancers13184529] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Bao MH, Wong CC. Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells 2021;10:1715. [PMID: 34359884 DOI: 10.3390/cells10071715] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 14.0] [Reference Citation Analysis]
|