BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pan Y, Yu Y, Wang X, Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front Immunol 2020;11:583084. [PMID: 33365025 DOI: 10.3389/fimmu.2020.583084] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Tong W, Wang G, Zhu L, Bai Y, Liu Z, Yang L, Wu H, Cui T, Zhang Y. Pan-Cancer Analysis Identified CD93 as a Valuable Biomarker for Predicting Patient Prognosis and Immunotherapy Response. Front Mol Biosci 2022;8:793445. [DOI: 10.3389/fmolb.2021.793445] [Reference Citation Analysis]
2 Aghanejad A, Bonab SF, Sepehri M, Haghighi FS, Tarighatnia A, Kreiter C, Nader ND, Tohidkia MR. A review on targeting tumor microenvironment: The main paradigm shift in the mAb-based immunotherapy of solid tumors. Int J Biol Macromol 2022;207:592-610. [PMID: 35296439 DOI: 10.1016/j.ijbiomac.2022.03.057] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Boyer T, Blaye C, Larmonier N, Domblides C. Influence of the Metabolism on Myeloid Cell Functions in Cancers: Clinical Perspectives. Cells 2022;11:554. [PMID: 35159363 DOI: 10.3390/cells11030554] [Reference Citation Analysis]
4 Dong W, Wang H, Liu H, Zhou C, Zhang X, Wang S, He L, Mendoza-diaz G. Potential of Black Phosphorus in Immune-Based Therapeutic Strategies. Bioinorganic Chemistry and Applications 2022;2022:1-18. [DOI: 10.1155/2022/3790097] [Reference Citation Analysis]
5 Liu C, Zhang X, Hu C, Liang X, Cao X, Wang D. Systematic Construction and Validation of a Novel Macrophage Differentiation–Associated Prognostic Model for Clear Cell Renal Cell Carcinoma. Front Genet 2022;13:877656. [DOI: 10.3389/fgene.2022.877656] [Reference Citation Analysis]
6 Bouchard A, Sikner H, Baverel V, Garnier AR, Monterrat M, Moreau M, Limagne E, Garrido C, Kohli E, Collin B, Bellaye PS. The GRP94 Inhibitor PU-WS13 Decreases M2-like Macrophages in Murine TNBC Tumors: A Pharmaco-Imaging Study with 99mTc-Tilmanocept SPECT. Cells 2021;10:3393. [PMID: 34943901 DOI: 10.3390/cells10123393] [Reference Citation Analysis]
7 Duan S, Wang S, Huang T, Wang J, Yuan X. circRNAs: Insight Into Their Role in Tumor-Associated Macrophages. Front Oncol 2021;11:780744. [DOI: 10.3389/fonc.2021.780744] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Rihawi K, Ricci AD, Rizzo A, Brocchi S, Marasco G, Pastore LV, Llimpe FLR, Golfieri R, Renzulli M. Tumor-Associated Macrophages and Inflammatory Microenvironment in Gastric Cancer: Novel Translational Implications. Int J Mol Sci 2021;22:3805. [PMID: 33916915 DOI: 10.3390/ijms22083805] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Chiang I, Lee Y, Tan Z, Hsu F, Tu H. Regorafenib enhances antitumor immune efficacy of anti-PD-L1 immunotherapy on oral squamous cell carcinoma. Biomedicine & Pharmacotherapy 2022;147:112661. [DOI: 10.1016/j.biopha.2022.112661] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sun BY, Zhou C, Guan RY, Liu G, Yang ZF, Wang ZT, Gan W, Zhou J, Fan J, Yi Y, Qiu SJ. Dissecting Intra-Tumoral Changes Following Immune Checkpoint Blockades in Intrahepatic Cholangiocarcinoma via Single-Cell Analysis. Front Immunol 2022;13:871769. [PMID: 35558087 DOI: 10.3389/fimmu.2022.871769] [Reference Citation Analysis]
11 Liu H, Zhao H, Sun Y. Tumor microenvironment and cellular senescence: Understanding therapeutic resistance and harnessing strategies. Semin Cancer Biol 2021:S1044-579X(21)00271-6. [PMID: 34799201 DOI: 10.1016/j.semcancer.2021.11.004] [Reference Citation Analysis]
12 Zhou M, Wang C, Lu S, Xu Y, Li Z, Jiang H, Ma Y. Tumor-associated macrophages in cholangiocarcinoma: complex interplay and potential therapeutic target. EBioMedicine 2021;67:103375. [PMID: 33993051 DOI: 10.1016/j.ebiom.2021.103375] [Reference Citation Analysis]
13 Khalaf K, Hana D, Chou JT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021;12:656364. [PMID: 34122412 DOI: 10.3389/fimmu.2021.656364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Malla R, Padmaraju V, Kundrapu DB. Tumor-associated macrophages: Potential target of natural compounds for management of breast cancer. Life Sci 2022;301:120572. [PMID: 35489567 DOI: 10.1016/j.lfs.2022.120572] [Reference Citation Analysis]
15 Negrea G, Rauca VF, Meszaros MS, Patras L, Luput L, Licarete E, Toma VA, Porfire A, Muntean D, Sesarman A, Banciu M. Active Tumor-Targeting Nano-formulations Containing Simvastatin and Doxorubicin Inhibit Melanoma Growth and Angiogenesis. Front Pharmacol 2022;13:870347. [PMID: 35450036 DOI: 10.3389/fphar.2022.870347] [Reference Citation Analysis]
16 Zhou N, Li T, Liang M, Ren F, Ni H, Liu W, Shi T, Xu D, Chen Q, Yu H, Song Z, Zu L, Li S, Xu S. Use of Pralsetinib as Neoadjuvant Therapy for Non-Small Cell Lung Cancer Patient With RET Rearrangement. Front Oncol 2022;12:848779. [PMID: 35223529 DOI: 10.3389/fonc.2022.848779] [Reference Citation Analysis]
17 Shipunov I, Kupaev V. Glycome assessment in patients with respiratory diseases. Translational Metabolic Syndrome Research 2022. [DOI: 10.1016/j.tmsr.2022.02.001] [Reference Citation Analysis]
18 Chardin L, Leary A. Immunotherapy in Ovarian Cancer: Thinking Beyond PD-1/PD-L1. Front Oncol 2021;11:795547. [PMID: 34966689 DOI: 10.3389/fonc.2021.795547] [Reference Citation Analysis]
19 Dong K, Liu J, Zhou W, Zhang G. Exploring the Relationship Between Senescence and Colorectal Cancer in Prognosis, Immunity, and Treatment. Front Genet 2022;13:930248. [DOI: 10.3389/fgene.2022.930248] [Reference Citation Analysis]
20 Codolo G, Facchinello N, Papa N, Bertocco A, Coletta S, Benna C, Dall'Olmo L, Mocellin S, Tiso N, de Bernard M. Macrophage-Mediated Melanoma Reduction after HP-NAP Treatment in a Zebrafish Xenograft Model. Int J Mol Sci 2022;23:1644. [PMID: 35163566 DOI: 10.3390/ijms23031644] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Visca H, DuPont M, Moshnikova A, Crawford T, Engelman DM, Andreev OA, Reshetnyak YK. pHLIP Peptides Target Acidity in Activated Macrophages. Mol Imaging Biol 2022. [PMID: 35604527 DOI: 10.1007/s11307-022-01737-x] [Reference Citation Analysis]
22 Yu S, Lu J. Macrophages in transplant rejection. Transpl Immunol 2022;71:101536. [PMID: 35017096 DOI: 10.1016/j.trim.2022.101536] [Reference Citation Analysis]
23 Song W, Ren J, Xiang R, Kong C, Fu T. Identification of pyroptosis-related subtypes, the development of a prognosis model, and characterization of tumor microenvironment infiltration in colorectal cancer. Oncoimmunology 2021;10:1987636. [PMID: 34676149 DOI: 10.1080/2162402X.2021.1987636] [Reference Citation Analysis]
24 Liu M, Liu N, Wang J, Fu S, Wang X, Chen D. Acetyl-CoA Synthetase 2 as a Therapeutic Target in Tumor Metabolism. Cancers (Basel) 2022;14:2896. [PMID: 35740562 DOI: 10.3390/cancers14122896] [Reference Citation Analysis]
25 Ni J, Zhou H, Gu J, Liu X, Chen J, Yi X, Yang K. Bacteria-assisted delivery and oxygen production of nano-enzyme for potent radioimmunotherapy of cancer. Nano Res . [DOI: 10.1007/s12274-022-4369-4] [Reference Citation Analysis]
26 Huang M, Xiong D, Pan J, Zhang Q, Wang Y, Myers CR, Johnson BD, Hardy M, Kalyanaraman B, You M. Prevention of Tumor Growth and Dissemination by In Situ Vaccination with Mitochondria-Targeted Atovaquone. Adv Sci (Weinh) 2022;9:e2101267. [PMID: 35243806 DOI: 10.1002/advs.202101267] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Yi Z, Ma T, Liu J, Tie W, Li Y, Bai J, Li L, Zhang L. The yin–yang effects of immunity: From monoclonal gammopathy of undetermined significance to multiple myeloma. Front Immunol 2022;13:925266. [DOI: 10.3389/fimmu.2022.925266] [Reference Citation Analysis]
28 Liu K, Ding Y, Wang Y, Zhao Q, Yan L, Xie J, Liu Y, Xie Q, Cai W, Bao S, Wang H. Combination of IL-34 and AFP improves the diagnostic value during the development of HBV related hepatocellular carcinoma. Clin Exp Med. [DOI: 10.1007/s10238-022-00810-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Huang Y, Li S, Huang S, Tu J, Chen X, Xiao L, Liu B, Yuan X. Comprehensive and Integrative Analysis of Two Novel SARS-CoV-2 Entry Associated Proteases CTSB and CTSL in Healthy Individuals and Cancer Patients. Front Bioeng Biotechnol 2022;10:780751. [DOI: 10.3389/fbioe.2022.780751] [Reference Citation Analysis]
30 Chen B, Wu L, Tang X, Wang T, Wang S, Yu H, Wan G, Xie M, Zhang R, Xiao H, Deng W. Quercetin Inhibits Tumorigenesis of Colorectal Cancer Through Downregulation of hsa_circ_0006990. Front Pharmacol 2022;13:874696. [PMID: 35662705 DOI: 10.3389/fphar.2022.874696] [Reference Citation Analysis]
31 Sun J, Chen Y, Lubben B, Adebayo O, Muz B, Azab AK. CD47-targeting antibodies as a novel therapeutic strategy in hematologic malignancies. Leuk Res Rep 2021;16:100268. [PMID: 34584838 DOI: 10.1016/j.lrr.2021.100268] [Reference Citation Analysis]
32 Liang F, Rezapour A, Szeponik L, Alsén S, Wettergren Y, Bexe Lindskog E, Quiding-Järbrink M, Yrlid U. Antigen Presenting Cells from Tumor and Colon of Colorectal Cancer Patients Are Distinct in Activation and Functional Status, but Comparably Responsive to Activated T Cells. Cancers (Basel) 2021;13:5247. [PMID: 34680397 DOI: 10.3390/cancers13205247] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Wang H, Tian T, Zhang J. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From Mechanism to Therapy and Prognosis. Int J Mol Sci 2021;22:8470. [PMID: 34445193 DOI: 10.3390/ijms22168470] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Lee-rueckert M, Lappalainen J, Kovanen PT, Escola-gil JC. Lipid-Laden Macrophages and Inflammation in Atherosclerosis and Cancer: An Integrative View. Front Cardiovasc Med 2022;9:777822. [DOI: 10.3389/fcvm.2022.777822] [Reference Citation Analysis]
35 Chen Y, Hong C, Qu J, Chen J, Qin Z. Knockdown of lncRNA PCAT6 suppresses the growth of non-small cell lung cancer cells by inhibiting macrophages M2 polarization via miR-326/KLF1 axis. Bioengineered 2022;13:12834-46. [PMID: 35609331 DOI: 10.1080/21655979.2022.2076388] [Reference Citation Analysis]
36 Ozaniak A, Vachtenheim J Jr, Lischke R, Bartunkova J, Strizova Z. Novel Insights into the Immunotherapy of Soft Tissue Sarcomas: Do We Need a Change of Perspective? Biomedicines 2021;9:935. [PMID: 34440139 DOI: 10.3390/biomedicines9080935] [Reference Citation Analysis]
37 Kadomoto S, Izumi K, Mizokami A. Macrophage Polarity and Disease Control. Int J Mol Sci 2021;23:144. [PMID: 35008577 DOI: 10.3390/ijms23010144] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
38 Dang J, He Z, Cui X, Fan J, Hambly DJ, Hambly BD, Li X, Bao S. The Role of IL-37 and IL-38 in Colorectal Cancer. Front Med (Lausanne) 2022;9:811025. [PMID: 35186997 DOI: 10.3389/fmed.2022.811025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Jhan MK, Chen CL, Shen TJ, Tseng PC, Wang YT, Satria RD, Yu CY, Lin CF. Polarization of Type 1 Macrophages Is Associated with the Severity of Viral Encephalitis Caused by Japanese Encephalitis Virus and Dengue Virus. Cells 2021;10:3181. [PMID: 34831405 DOI: 10.3390/cells10113181] [Reference Citation Analysis]
40 Ringquist R, Ghoshal D, Jain R, Roy K. Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021;179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
41 Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Santos Marques H, de Brito BB, França da Silva FA, Souza CL, Oliveira MV, de Melo FF. From Helicobacter pylori infection to gastric cancer: Current evidence on the immune response. World J Clin Oncol 2022; 13(3): 186-199 [DOI: 10.5306/wjco.v13.i3.186] [Reference Citation Analysis]
42 Zhou N, Cui Y, Zhu R, Kuang Y, Ma W, Hou J, Zhu Y, Chen S, Xu X, Tan K, Cao P, Duan X, Fan Y. Deferasirox shows inhibition activity against cervical cancer in vitro and in vivo. Gynecologic Oncology 2022. [DOI: 10.1016/j.ygyno.2022.05.006] [Reference Citation Analysis]
43 Cao F, Hu J, Yuan H, Cao P, Cheng Y, Wang Y. Identification of pyroptosis-related subtypes, development of a prognostic model, and characterization of tumour microenvironment infiltration in gastric cancer. Front Genet 2022;13:963565. [DOI: 10.3389/fgene.2022.963565] [Reference Citation Analysis]
44 Gayer FA, Fichtner A, Legler TJ, Reichardt HM. A Coculture Model Mimicking the Tumor Microenvironment Unveils Mutual Interactions between Immune Cell Subtypes and the Human Seminoma Cell Line TCam-2. Cells 2022;11:885. [DOI: 10.3390/cells11050885] [Reference Citation Analysis]
45 Li P, Hao Z, Wu J, Ma C, Xu Y, Li J, Lan R, Zhu B, Ren P, Fan D, Sun S. Comparative Proteomic Analysis of Polarized Human THP-1 and Mouse RAW264.7 Macrophages. Front Immunol 2021;12:700009. [PMID: 34267761 DOI: 10.3389/fimmu.2021.700009] [Reference Citation Analysis]
46 Singh P, Yadav M, Niveria K, Verma AK. Nano-immunotherapeutics: targeting approach as strategic regulation at tumor microenvironment for cancer treatment. Exploration of Medicine. [DOI: 10.37349/emed.2022.00072] [Reference Citation Analysis]
47 Suvannapruk W, Edney MK, Kim DH, Scurr DJ, Ghaemmaghami AM, Alexander MR. Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype. Anal Chem 2022. [PMID: 35713879 DOI: 10.1021/acs.analchem.2c01375] [Reference Citation Analysis]
48 Casagrande N, Borghese C, Aldinucci D. Current and Emerging Approaches to Study Microenvironmental Interactions and Drug Activity in Classical Hodgkin Lymphoma. Cancers 2022;14:2427. [DOI: 10.3390/cancers14102427] [Reference Citation Analysis]
49 Wang Q, Huang Y, Jia M, Lu D, Zhang HW, Huang D, Liu SH, Lv C. Safflower Polysaccharide Inhibits AOM/DSS-Induced Mice Colorectal Cancer Through the Regulation of Macrophage Polarization. Front Pharmacol 2021;12:761641. [PMID: 34744741 DOI: 10.3389/fphar.2021.761641] [Reference Citation Analysis]
50 Zhu S, Li S, Yi M, Li N, Wu K. Roles of Microvesicles in Tumor Progression and Clinical Applications. Int J Nanomedicine 2021;16:7071-90. [PMID: 34703228 DOI: 10.2147/IJN.S325448] [Reference Citation Analysis]
51 Han M, Kang R, Zhang C. Lymph Node Mapping for Tumor Micrometastasis. ACS Biomater Sci Eng 2022;8:2307-20. [PMID: 35548973 DOI: 10.1021/acsbiomaterials.2c00111] [Reference Citation Analysis]
52 Chernosky NM, Tamagno I. The Role of the Innate Immune System in Cancer Dormancy and Relapse. Cancers (Basel) 2021;13:5621. [PMID: 34830776 DOI: 10.3390/cancers13225621] [Reference Citation Analysis]
53 Hunt BG, Jones A, Lester C, Davis JC, Benight NM, Waltz SE. RON (MST1R) and HGFL (MST1) Co-Overexpression Supports Breast Tumorigenesis through Autocrine and Paracrine Cellular Crosstalk. Cancers 2022;14:2493. [DOI: 10.3390/cancers14102493] [Reference Citation Analysis]
54 Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol 2021;10. [DOI: 10.1186/s40164-021-00252-z] [Reference Citation Analysis]
55 Qiu X, Zhao T, Luo R, Qiu R, Li Z. Tumor-Associated Macrophages: Key Players in Triple-Negative Breast Cancer. Front Oncol 2022;12:772615. [DOI: 10.3389/fonc.2022.772615] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
56 Porcellato I, Sforna M, Lo Giudice A, Bossi I, Musi A, Tognoloni A, Chiaradia E, Mechelli L, Brachelente C. Tumor-Associated Macrophages in Canine Oral and Cutaneous Melanomas and Melanocytomas: Phenotypic and Prognostic Assessment. Front Vet Sci 2022;9:878949. [DOI: 10.3389/fvets.2022.878949] [Reference Citation Analysis]
57 Shen C, Liu C, Zhang Z, Ping Y, Shao J, Tian Y, Yu W, Qin G, Liu S, Wang L, Zhang Y. PD-1 Affects the Immunosuppressive Function of Group 2 Innate Lymphoid Cells in Human Non-Small Cell Lung Cancer. Front Immunol 2021;12:680055. [PMID: 34194433 DOI: 10.3389/fimmu.2021.680055] [Reference Citation Analysis]
58 Peng J, Liang Q, Xu Z, Cai Y, Peng B, Li J, Zhang W, Kang F, Hong Q, Yan Y, Zhang M. Current Understanding of Exosomal MicroRNAs in Glioma Immune Regulation and Therapeutic Responses. Front Immunol 2021;12:813747. [PMID: 35095909 DOI: 10.3389/fimmu.2021.813747] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
59 Huang X, Cao J, Zu X. Tumor-associated macrophages: An important player in breast cancer progression. Thorac Cancer 2021. [PMID: 34914196 DOI: 10.1111/1759-7714.14268] [Reference Citation Analysis]
60 Yuan X, Yang H, Zeng F, Zhou S, Wu S, Yuan Y, Cui L, Feng H, Lin D, Chen Z, Liu X, Chen J, Wang F. Prognostic value of systemic inflammation response index in nasopharyngeal carcinoma with negative Epstein-Barr virus DNA. BMC Cancer 2022;22:858. [PMID: 35932022 DOI: 10.1186/s12885-022-09942-1] [Reference Citation Analysis]
61 Rai V, Dilisio MF, Samadi F, Agrawal DK. Counteractive Effects of IL-33 and IL-37 on Inflammation in Osteoarthritis. IJERPH 2022;19:5690. [DOI: 10.3390/ijerph19095690] [Reference Citation Analysis]
62 Zhang M, Pan X, Fujiwara K, Jurcak N, Muth S, Zhou J, Xiao Q, Li A, Che X, Li Z, Zheng L. Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Signal Transduct Target Ther 2021;6:366. [PMID: 34711804 DOI: 10.1038/s41392-021-00769-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Laba S, Mallett G, Amarnath S. The depths of PD-1 function within the tumor microenvironment beyond CD8+ T cells. Semin Cancer Biol 2021:S1044-579X(21)00153-X. [PMID: 34048897 DOI: 10.1016/j.semcancer.2021.05.022] [Reference Citation Analysis]
64 Han M, Ryu G, Shin SA, An J, Kim H, Park D, Lee DH, Lee CS. Physiological Roles of Apoptotic Cell Clearance: Beyond Immune Functions. Life (Basel) 2021;11:1141. [PMID: 34833017 DOI: 10.3390/life11111141] [Reference Citation Analysis]
65 Nisenbaum E, Misztal C, Szczupak M, Thielhelm T, Peña S, Mei C, Goncalves S, Bracho O, Ma R, Ivan ME, Morcos J, Telischi F, Liu XZ, Fernandez-Valle C, Dinh CT. Tumor-Associated Macrophages in Vestibular Schwannoma and Relationship to Hearing. OTO Open 2021;5:2473974X211059111. [PMID: 34870062 DOI: 10.1177/2473974X211059111] [Reference Citation Analysis]
66 Gonçalves DA, Jasiulionis MG, Melo FHM. The Role of the BH4 Cofactor in Nitric Oxide Synthase Activity and Cancer Progression: Two Sides of the Same Coin. Int J Mol Sci 2021;22:9546. [PMID: 34502450 DOI: 10.3390/ijms22179546] [Reference Citation Analysis]
67 Jiang Z, Zhang Y, Zhang Y, Jia Z, Zhang Z, Yang J. Cancer derived exosomes induce macrophages immunosuppressive polarization to promote bladder cancer progression. Cell Commun Signal 2021;19:93. [PMID: 34521440 DOI: 10.1186/s12964-021-00768-1] [Reference Citation Analysis]
68 Maklygina Y, Romanishkin I, Skobeltsin A, Farrakhova D, Loschenov V. Phototherapy of Brain Tumours Using a Fibre Optic Neurosystem. Photonics 2021;8:462. [DOI: 10.3390/photonics8110462] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
69 Luo S, Yang G, Ye P, Cao N, Chi X, Yang WH, Yan X. Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022;12:850. [PMID: 35740975 DOI: 10.3390/biom12060850] [Reference Citation Analysis]
70 Davuluri GVN, Chan CH. Regulation of intrinsic and extrinsic metabolic pathways in tumour-associated macrophages. FEBS J 2022. [PMID: 35486022 DOI: 10.1111/febs.16465] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Lin J, Huang D, Xu H, Zhan F, Tan X. Macrophages: A communication network linking Porphyromonas gingivalis infection and associated systemic diseases. Front Immunol 2022;13:952040. [DOI: 10.3389/fimmu.2022.952040] [Reference Citation Analysis]
72 Berg TJ, Pietras A. Radiotherapy-induced remodeling of the tumor microenvironment by stromal cells. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.02.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
73 Zhang C, Ma Y, Zhang J, Kuo JC, Zhang Z, Xie H, Zhu J, Liu T. Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy. Molecules 2022;27:1943. [DOI: 10.3390/molecules27061943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 García-domínguez DJ, Hontecillas-prieto L, Palazón-carrión N, Jiménez-cortegana C, Sánchez-margalet V, de la Cruz-merino L. Tumor Immune Microenvironment in Lymphoma: Focus on Epigenetics. Cancers 2022;14:1469. [DOI: 10.3390/cancers14061469] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Tan Y, Zhao L, Yang Y, Liu W. The Role of Osteopontin in Tumor Progression Through Tumor-Associated Macrophages. Front Oncol 2022;12:953283. [DOI: 10.3389/fonc.2022.953283] [Reference Citation Analysis]
76 Bin YL, Hu HS, Tian F, Wen ZH, Yang MF, Wu BH, Wang LS, Yao J, Li DF. Metabolic Reprogramming in Gastric Cancer: Trojan Horse Effect. Front Oncol 2021;11:745209. [PMID: 35096565 DOI: 10.3389/fonc.2021.745209] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
77 Kim SK, Cho SW. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Front Pharmacol 2022;13:868695. [DOI: 10.3389/fphar.2022.868695] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Wu J, Zhou J, Xu Q, Foley R, Guo J, Zhang X, Tian C, Mu M, Xing Y, Liu Y, Wang X, Hu D. Identification of Key Genes Driving Tumor Associated Macrophage Migration and Polarization Based on Immune Fingerprints of Lung Adenocarcinoma. Front Cell Dev Biol 2021;9:751800. [PMID: 34805160 DOI: 10.3389/fcell.2021.751800] [Reference Citation Analysis]
79 Hasan MN, Capuk O, Patel SM, Sun D. The Role of Metabolic Plasticity of Tumor-Associated Macrophages in Shaping the Tumor Microenvironment Immunity. Cancers 2022;14:3331. [DOI: 10.3390/cancers14143331] [Reference Citation Analysis]
80 Xia H, Huang Z, Wang Z, Liu S, Zhao X, You J, Xu Y, Yam JWP, Cui Y. Glucometabolic reprogramming: From trigger to therapeutic target in hepatocellular carcinoma. Front Oncol 2022;12:953668. [DOI: 10.3389/fonc.2022.953668] [Reference Citation Analysis]
81 Song W, Ren J, Xiang R, Yuan W, Fu T. Cross-Talk Between m6A- and m5C-Related lncRNAs to Construct a Novel Signature and Predict the Immune Landscape of Colorectal Cancer Patients. Front Immunol 2022;13:740960. [PMID: 35350786 DOI: 10.3389/fimmu.2022.740960] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
82 Filimon A, Preda IA, Boloca AF, Negroiu G. Interleukin-8 in Melanoma Pathogenesis, Prognosis and Therapy-An Integrated View into Other Neoplasms and Chemokine Networks. Cells 2021;11:120. [PMID: 35011682 DOI: 10.3390/cells11010120] [Reference Citation Analysis]
83 Khatoon E, Parama D, Kumar A, Alqahtani MS, Abbas M, Girisa S, Sethi G, Kunnumakkara AB. Targeting PD-1/PD-L1 axis as new horizon for ovarian cancer therapy. Life Sci 2022;:120827. [PMID: 35907493 DOI: 10.1016/j.lfs.2022.120827] [Reference Citation Analysis]
84 Zhang J, Liu Z, Cao P, Wang H, Liu H, Hua L, Xue H, Fu R. Tumor-associated macrophages regulate the function of cytotoxic T lymphocyte through PD-1/PD-L1 pathway in multiple myeloma. Cancer Med 2022. [PMID: 35593325 DOI: 10.1002/cam4.4814] [Reference Citation Analysis]
85 Luo Y, Wang H, Liu B, Wei J. Fatty Acid Metabolism and Cancer Immunotherapy. Curr Oncol Rep 2022. [PMID: 35230593 DOI: 10.1007/s11912-022-01223-1] [Reference Citation Analysis]
86 Zhang J, Wang Z, Zhang X, Dai Z, Zhi-Peng W, Yu J, Peng Y, Wu W, Zhang N, Luo P, Zhang J, Liu Z, Feng S, Zhang H, Cheng Q. Large-Scale Single-Cell and Bulk Sequencing Analyses Reveal the Prognostic Value and Immune Aspects of CD147 in Pan-Cancer. Front Immunol 2022;13:810471. [PMID: 35464411 DOI: 10.3389/fimmu.2022.810471] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
87 Zou J, Zhang H, Huang Y, Xu W, Huang Y, Zuo S, Li Z, Zhou H. Multi-Omics Analysis of the Tumor Microenvironment in Liver Metastasis of Colorectal Cancer Identified FJX1 as a Novel Biomarker. Front Genet 2022;13:960954. [DOI: 10.3389/fgene.2022.960954] [Reference Citation Analysis]
88 Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022;7:258. [PMID: 35906199 DOI: 10.1038/s41392-022-01102-y] [Reference Citation Analysis]
89 Peña-romero AC, Orenes-piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers 2022;14:1681. [DOI: 10.3390/cancers14071681] [Reference Citation Analysis]
90 Wang C, Guo J, Jiang R, Wang C, Pan C, Nie Z, Jiang X. Long Non-Coding RNA AP000695.2 Acts as a Novel Prognostic Biomarker and Regulates the Cell Growth and Migration of Lung Adenocarcinoma. Front Mol Biosci 2022;9:895927. [DOI: 10.3389/fmolb.2022.895927] [Reference Citation Analysis]
91 Hussain A. Therapeutic applications of engineered chimeric antigen receptors-T cell for cancer therapy. Beni-Suef Univ J Basic Appl Sci 2022;11. [DOI: 10.1186/s43088-022-00238-8] [Reference Citation Analysis]
92 Hu J, Zhang M, Gui L, Wan Q, Zhong J, Bai L, He M. PCSK9 Suppresses M2-Like Tumor-Associated Macrophage Polarization by Regulating the Secretion of OX40L from Hepatocellular Carcinoma Cells. Immunol Invest 2022;:1-16. [PMID: 35078374 DOI: 10.1080/08820139.2022.2027439] [Reference Citation Analysis]
93 Sundaram S, Kim EN, Jones GM, Sivagnanam S, Tripathi M, Miremadi A, Di Pietro M, Coussens LM, Fitzgerald RC, Chang YH, Zhuang L. Deciphering the Immune Complexity in Esophageal Adenocarcinoma and Pre-Cancerous Lesions With Sequential Multiplex Immunohistochemistry and Sparse Subspace Clustering Approach. Front Immunol 2022;13:874255. [PMID: 35663986 DOI: 10.3389/fimmu.2022.874255] [Reference Citation Analysis]
94 Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups. Front Immunol 2021;12:778078. [PMID: 34925351 DOI: 10.3389/fimmu.2021.778078] [Reference Citation Analysis]
95 Donoso‐meneses D, Figueroa‐valdés AI, Georges N, Tobar HE, Alcayaga‐miranda F. Turning adversity into opportunity: Small extracellular vesicles as nanocarriers for tumor‐associated macrophages re‐education. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10349] [Reference Citation Analysis]
96 Huang Y, Yang Z, Huang C, Jiang X, Yan Y, Zhuang K, Wen Y, Liu F, Li P. Identification of N6-Methylandenosine-Related lncRNAs for Subtype Identification and Risk Stratification in Gastric Adenocarcinoma. Front Oncol 2021;11:725181. [PMID: 34646770 DOI: 10.3389/fonc.2021.725181] [Reference Citation Analysis]
97 Shen C, Luo C, Xu Z, Liang Q, Cai Y, Peng B, Yan Y, Xia F. Molecular Patterns Based on Immunogenomic Signatures Stratify the Prognosis of Colon Cancer. Front Bioeng Biotechnol 2022;10:820092. [DOI: 10.3389/fbioe.2022.820092] [Reference Citation Analysis]
98 Zhu L, Zhu X, Wu Y. Effects of Glucose Metabolism, Lipid Metabolism, and Glutamine Metabolism on Tumor Microenvironment and Clinical Implications. Biomolecules 2022;12:580. [DOI: 10.3390/biom12040580] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Novruzov E, Mori Y, Antke C, Dabir M, Schmitt D, Kratochwil C, Koerber SA, Haberkorn U, Giesel FL. A Role of Non-FDG Tracers in Lung Cancer? Semin Nucl Med 2022:S0001-2998(22)00054-X. [PMID: 35803770 DOI: 10.1053/j.semnuclmed.2022.05.004] [Reference Citation Analysis]
100 Wang F, Stappenbeck F, Tang LY, Zhang YE, Hui ST, Lusis AJ, Parhami F. Oxy210, a Semi-Synthetic Oxysterol, Exerts Anti-Inflammatory Effects in Macrophages via Inhibition of Toll-like Receptor (TLR) 4 and TLR2 Signaling and Modulation of Macrophage Polarization. Int J Mol Sci 2022;23:5478. [PMID: 35628290 DOI: 10.3390/ijms23105478] [Reference Citation Analysis]
101 Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H, Wang C. Immunotherapy: Reshape the Tumor Immune Microenvironment. Front Immunol 2022;13:844142. [PMID: 35874717 DOI: 10.3389/fimmu.2022.844142] [Reference Citation Analysis]
102 Huang D, Huang Z, Indukuri R, Bangalore Revanna C, Berglund M, Guan J, Yakimchuk K, Damdimopoulos A, Williams C, Okret S. Estrogen Receptor β (ESR2) Transcriptome and Chromatin Binding in a Mantle Cell Lymphoma Tumor Model Reveal the Tumor-Suppressing Mechanisms of Estrogens. Cancers 2022;14:3098. [DOI: 10.3390/cancers14133098] [Reference Citation Analysis]
103 Li YR, Brown J, Yu Y, Lee D, Zhou K, Dunn ZS, Hon R, Wilson M, Kramer A, Zhu Y, Fang Y, Yang L. Targeting Immunosuppressive Tumor-Associated Macrophages Using Innate T Cells for Enhanced Antitumor Reactivity. Cancers (Basel) 2022;14:2749. [PMID: 35681730 DOI: 10.3390/cancers14112749] [Reference Citation Analysis]
104 Liu Q, Sun W, Zhang H. Roles and new Insights of Macrophages in the Tumor Microenvironment of Thyroid Cancer. Front Pharmacol 2022;13:875384. [DOI: 10.3389/fphar.2022.875384] [Reference Citation Analysis]
105 Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022. [PMID: 35481621 DOI: 10.1002/cac2.12291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Zhang L, Loh XJ, Ruan J. Photoelectrochemical nanosensors: An emerging technique for tumor liquid biopsy. Journal of Photochemistry and Photobiology A: Chemistry 2022;429:113942. [DOI: 10.1016/j.jphotochem.2022.113942] [Reference Citation Analysis]
107 Wang H, Zhao C, Santa-Maria CA, Emens LA, Popel AS. Dynamics of tumor-associated macrophages in a quantitative systems pharmacology model of immunotherapy in triple-negative breast cancer. iScience 2022;25:104702. [PMID: 35856032 DOI: 10.1016/j.isci.2022.104702] [Reference Citation Analysis]
108 Li Y, Liu X, Zhang X, Pan W, Li N, Tang B. Immune Cycle‐Based Strategies for Cancer Immunotherapy. Adv Funct Mater 2021;31:2107540. [DOI: 10.1002/adfm.202107540] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
109 Wang X, Wang J, Zhao J, Wang H, Chen J, Wu J. HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment. Theranostics 2022;12:963-75. [PMID: 34976223 DOI: 10.7150/thno.65411] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Romayor I, García-vaquero ML, Márquez J, Arteta B, Barceló R, Benedicto A, Sahgal P. Discoidin Domain Receptor 2 Expression as Worse Prognostic Marker in Invasive Breast Cancer. The Breast Journal 2022;2022:1-14. [DOI: 10.1155/2022/5169405] [Reference Citation Analysis]
111 Li S, Yue H, Wang S, Li X, Wang X, Guo P, Ma G, Wei W. Advances of bacteria-based delivery systems for modulating tumor microenvironment. Adv Drug Deliv Rev 2022;188:114444. [PMID: 35817215 DOI: 10.1016/j.addr.2022.114444] [Reference Citation Analysis]
112 Wang L, Feng T, Su Z, Pi C, Wei Y, Zhao L. Latest research progress on anticancer effect of baicalin and its aglycone baicalein. Arch Pharm Res . [DOI: 10.1007/s12272-022-01397-z] [Reference Citation Analysis]
113 Shen T, Zhang J, Wang Y, Liu B. FCGBP Is a Promising Prognostic Biomarker and Correlates with Immunotherapy Efficacy in Oral Squamous Cell Carcinoma. J Immunol Res 2022;2022:8443392. [PMID: 35733916 DOI: 10.1155/2022/8443392] [Reference Citation Analysis]
114 Huang Q, Wu M, Wu X, Zhang Y, Xia Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim Biophys Acta Rev Cancer 2022;1877:188761. [PMID: 35850277 DOI: 10.1016/j.bbcan.2022.188761] [Reference Citation Analysis]
115 O'Rawe M, Kilmister EJ, Mantamadiotis T, Kaye AH, Tan ST, Wickremesekera AC. The Renin-Angiotensin System in the Tumor Microenvironment of Glioblastoma. Cancers (Basel) 2021;13:4004. [PMID: 34439159 DOI: 10.3390/cancers13164004] [Reference Citation Analysis]
116 Wang Y, Huang Z, Li B, Liu L, Huang C. The Emerging Roles and Therapeutic Implications of Epigenetic Modifications in Ovarian Cancer. Front Endocrinol 2022;13:863541. [DOI: 10.3389/fendo.2022.863541] [Reference Citation Analysis]
117 Mun JY, Leem SH, Lee JH, Kim HS. Dual Relationship Between Stromal Cells and Immune Cells in the Tumor Microenvironment. Front Immunol 2022;13:864739. [PMID: 35464435 DOI: 10.3389/fimmu.2022.864739] [Reference Citation Analysis]
118 Franzè E, Marafini I, Troncone E, Salvatori S, Monteleone G. Interleukin-34 promotes tumorigenic signals for colon cancer cells. Cell Death Discov 2021;7:245. [PMID: 34535634 DOI: 10.1038/s41420-021-00636-4] [Reference Citation Analysis]
119 Huaux F. Interpreting Immunoregulation in Lung Fibrosis: A New Branch of the Immune Model. Front Immunol 2021;12:690375. [PMID: 34489937 DOI: 10.3389/fimmu.2021.690375] [Reference Citation Analysis]
120 Zhang J, Yuan X, Wang Y, Liu J, Li Z, Li S, Liu Y, Gong X, Sun Y, Wu W, Sun L, Du S, Wang T. Tumor-Associated Macrophages Correlate With Prognosis in Medulloblastoma. Front Oncol 2022;12:893132. [DOI: 10.3389/fonc.2022.893132] [Reference Citation Analysis]
121 Lan Y, Yeung TL, Huang H, Wegener AA, Saha S, Toister-Achituv M, Jenkins MH, Chiu LY, Lazorchak A, Tarcic O, Wang H, Qi J, Locke G, Kalimi D, Qin G, Marelli B, Yu H, Gross AW, Derner MG, Soloviev M, Botte M, Sircar A, Ma H, Sood VD, Zhang D, Jiang F, Lo KM. Colocalized targeting of TGF-β and PD-L1 by bintrafusp alfa elicits distinct antitumor responses. J Immunother Cancer 2022;10:e004122. [PMID: 35858707 DOI: 10.1136/jitc-2021-004122] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
122 Lin C, Xi Y, Yu H, Wang Z, Chen X, Shen W, Ding X. circRNA TCFL5 Promote Esophageal Cancer Progression by Modulating M2 Macrophage Polarization via the miR-543-FMNL2 Axis. Journal of Oncology 2022;2022:1-18. [DOI: 10.1155/2022/5075615] [Reference Citation Analysis]
123 Bie N, Yong T, Wei Z, Gan L, Yang X. Extracellular vesicles for improved tumor accumulation and penetration. Adv Drug Deliv Rev 2022;188:114450. [PMID: 35841955 DOI: 10.1016/j.addr.2022.114450] [Reference Citation Analysis]
124 Petty AJ, Owen DH, Yang Y, Huang X. Targeting Tumor-Associated Macrophages in Cancer Immunotherapy. Cancers (Basel) 2021;13:5318. [PMID: 34771482 DOI: 10.3390/cancers13215318] [Reference Citation Analysis]
125 Chen Z, Wu J, Wang L, Zhao H, He J. Tumor-associated macrophages of the M1/M2 phenotype are involved in the regulation of malignant biological behavior of breast cancer cells through the EMT pathway. Med Oncol 2022;39. [DOI: 10.1007/s12032-022-01670-7] [Reference Citation Analysis]