BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Crucian BE, Choukèr A, Simpson RJ, Mehta S, Marshall G, Smith SM, Zwart SR, Heer M, Ponomarev S, Whitmire A, Frippiat JP, Douglas GL, Lorenzi H, Buchheim JI, Makedonas G, Ginsburg GS, Ott CM, Pierson DL, Krieger SS, Baecker N, Sams C. Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions. Front Immunol 2018;9:1437. [PMID: 30018614 DOI: 10.3389/fimmu.2018.01437] [Cited by in Crossref: 154] [Cited by in F6Publishing: 161] [Article Influence: 30.8] [Reference Citation Analysis]
Number Citing Articles
1 Nguyen CN, Urquieta E. Contemporary review of dermatologic conditions in space flight and future implications for long-duration exploration missions. Life Sci Space Res (Amst) 2023;36:147-56. [PMID: 36682824 DOI: 10.1016/j.lssr.2022.10.004] [Reference Citation Analysis]
2 Çelen İ, Jayasinghe A, Doh JH, Sabanayagam CR. Transcriptomic Signature of the Simulated Microgravity Response in Caenorhabditis elegans and Comparison to Spaceflight Experiments. Cells 2023;12. [PMID: 36672205 DOI: 10.3390/cells12020270] [Reference Citation Analysis]
3 Radstake WE, Gautam K, Miranda S, Vermeesen R, Tabury K, Rehnberg E, Buset J, Janssen A, Leysen L, Neefs M, Verslegers M, Claesen J, van Goethem MJ, Weber U, Fournier C, Parisi A, Brandenburg S, Durante M, Baselet B, Baatout S. The Effects of Combined Exposure to Simulated Microgravity, Ionizing Radiation, and Cortisol on the In Vitro Wound Healing Process. Cells 2023;12. [PMID: 36672184 DOI: 10.3390/cells12020246] [Reference Citation Analysis]
4 Vélez Justiniano YA, Goeres DM, Sandvik EL, Kjellerup BV, Sysoeva TA, Harris JS, Warnat S, McGlennen M, Foreman CM, Yang J, Li W, Cassilly CD, Lott K, HerrNeckar LE. Mitigation and use of biofilms in space for the benefit of human space exploration. Biofilm 2023;5:100102. [PMID: 36660363 DOI: 10.1016/j.bioflm.2022.100102] [Reference Citation Analysis]
5 Oxlad M, Whitburn S, Carter AJ. Optimising Mission Success: A Holistic Approach to Selecting the Best People to Travel to Space. Human Uses of Outer Space 2023. [DOI: 10.1007/978-981-19-9462-3_2] [Reference Citation Analysis]
6 Krittanawong C, Singh NK, Scheuring RA, Urquieta E, Bershad EM, Macaulay TR, Kaplin S, Dunn C, Kry SF, Russomano T, Shepanek M, Stowe RP, Kirkpatrick AW, Broderick TJ, Sibonga JD, Lee AG, Crucian BE. Human Health during Space Travel: State-of-the-Art Review. Cells 2022;12. [PMID: 36611835 DOI: 10.3390/cells12010040] [Reference Citation Analysis]
7 Baghoum H, Alahmed H, Hachim M, Senok A, Jalaleddine N, Al Heialy S. Simulated Microgravity Influences Immunity-Related Biomarkers in Lung Cancer. Int J Mol Sci 2022;24. [PMID: 36613598 DOI: 10.3390/ijms24010155] [Reference Citation Analysis]
8 Lehr F, Pavletić B, Glatter T, Heimerl T, Moeller R, Niederholtmeyer H. Enhanced assembly of bacteriophage T7 produced in cell-free reactions under simulated microgravity.. [DOI: 10.1101/2022.12.16.520761] [Reference Citation Analysis]
9 Kim M, Jang G, Kim KS, Shin J. Detrimental effects of simulated microgravity on mast cell homeostasis and function. Front Immunol 2022;13:1055531. [PMID: 36591304 DOI: 10.3389/fimmu.2022.1055531] [Reference Citation Analysis]
10 Pohlen M, Carroll D, Prisk GK, Sawyer AJ. Overview of lunar dust toxicity risk. NPJ Microgravity 2022;8:55. [PMID: 36460679 DOI: 10.1038/s41526-022-00244-1] [Reference Citation Analysis]
11 Ponomarev SA, Shulguina SM, Kalinin SA, Antropova EN, Rykova MP, Orlova KD, Kutko OV, Shmarov VA, Vlasova DD, Sadova AA. State of the Human Innate Immunity Cell Component during 120-Day Isolation in a Pressurized Module. Hum Physiol 2022;48:827-832. [DOI: 10.1134/s036211972207009x] [Reference Citation Analysis]
12 Dawar A, Warmoota R. Influence of Microgravity on the Physiology, Pathogenicity and Antibiotic Efficacy of Microorganisms. J Res Appl Sci Biotechnol 2022;1:24-35. [DOI: 10.55544/jrasb.1.5.3] [Reference Citation Analysis]
13 Chaloulakou S, Poulia KA, Karayiannis D. Physiological Alterations in Relation to Space Flight: The Role of Nutrition. Nutrients 2022;14. [PMID: 36432580 DOI: 10.3390/nu14224896] [Reference Citation Analysis]
14 Millar-wilson A, Ward Ó, Duffy E, Hardiman G. Multiscale modeling in the framework of biological systems and its potential for spaceflight biology studies. iScience 2022;25:105421. [DOI: 10.1016/j.isci.2022.105421] [Reference Citation Analysis]
15 Mochi F, Scatena E, Rodriguez D, Ginebra MP, Del Gaudio C. Scaffold-based bone tissue engineering in microgravity: potential, concerns and implications. NPJ Microgravity 2022;8:45. [PMID: 36309540 DOI: 10.1038/s41526-022-00236-1] [Reference Citation Analysis]
16 Jacob P, Bonnefoy J, Ghislin S, Frippiat J. Long-duration head-down tilt bed rest confirms the relevance of the neutrophil to lymphocyte ratio and suggests coupling it with the platelet to lymphocyte ratio to monitor the immune health of astronauts. Front Immunol 2022;13:952928. [DOI: 10.3389/fimmu.2022.952928] [Reference Citation Analysis]
17 Cialdai F, Risaliti C, Monici M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front Bioeng Biotechnol 2022;10:958381. [DOI: 10.3389/fbioe.2022.958381] [Reference Citation Analysis]
18 Overbey EG, Das S, Cope H, Madrigal P, Andrusivova Z, Frapard S, Klotz R, Bezdan D, Gupta A, Scott RT, Park J, Chirko D, Galazka JM, Costes SV, Mason CE, Herranz R, Szewczyk NJ, Borg J, Giacomello S. Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight. Cell Reports Methods 2022. [DOI: 10.1016/j.crmeth.2022.100325] [Reference Citation Analysis]
19 Tozzo P, Delicati A, Caenazzo L. Skin Microbial Changes during Space Flights: A Systematic Review. Life 2022;12:1498. [DOI: 10.3390/life12101498] [Reference Citation Analysis]
20 Iyer J, Mhatre SD, Gilbert R, Bhattacharya S. Multi-system responses to altered gravity and spaceflight: Insights from Drosophila melanogaster. Neurosci Biobehav Rev 2022;:104880. [PMID: 36126744 DOI: 10.1016/j.neubiorev.2022.104880] [Reference Citation Analysis]
21 Lerer L, Varia J. A long trip into the universe: Psychedelics and space travel. Front Space Technol 2022;3. [DOI: 10.3389/frspt.2022.899159] [Reference Citation Analysis]
22 An R. MRTF may be the missing link in a multiscale mechanobiology approach toward macrophage dysfunction in space. Front Cell Dev Biol 2022;10:997365. [DOI: 10.3389/fcell.2022.997365] [Reference Citation Analysis]
23 Cao X. Research progress on the effects of microgravity and space radiation on astronauts’ health and nursing measures. Open Astronomy 2022;31:300-309. [DOI: 10.1515/astro-2022-0038] [Reference Citation Analysis]
24 Marfia G, Navone SE, Guarnaccia L, Campanella R, Locatelli M, Miozzo M, Perelli P, Della Morte G, Catamo L, Tondo P, Campanella C, Lucertini M, Ciniglio Appiani G, Landolfi A, Garzia E. Space flight and central nervous system: Friends or enemies? Challenges and opportunities for neuroscience and neuro-oncology. J Neurosci Res 2022;100:1649-63. [PMID: 35678198 DOI: 10.1002/jnr.25066] [Reference Citation Analysis]
25 Verma SD, de la Chapelle EP, Malkani S, Juran CM, Boyko V, Costes SV, Cekanaviciute E. Astrocytes regulate vascular endothelial responses to simulated deep space radiation in a human organ-on-a-chip model. Front Immunol 2022;13:864923. [DOI: 10.3389/fimmu.2022.864923] [Reference Citation Analysis]
26 Holley JM, Stanbouly S, Pecaut MJ, Willey JS, Delp M, Mao XW. Characterization of gene expression profiles in the mouse brain after 35 days of spaceflight mission. NPJ Microgravity 2022;8:35. [PMID: 35948598 DOI: 10.1038/s41526-022-00217-4] [Reference Citation Analysis]
27 Arora S, Puri S, Bhambri N. "A designer diet layout for astronauts using a microbiome mediated approach.". FEMS Microbiol Lett 2022;369:fnac049. [PMID: 35675219 DOI: 10.1093/femsle/fnac049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Mian A, Aamir Mian M. Space Medicine: Inspiring a new generation of physicians. Postgrad Med J 2022:postgradmedj-2022-141875. [PMID: 35858776 DOI: 10.1136/pmj-2022-141875] [Reference Citation Analysis]
29 Vahlensieck C, Thiel CS, Pöschl D, Bradley T, Krammer S, Lauber B, Polzer J, Ullrich O. Post-Transcriptional Dynamics is Involved in Rapid Adaptation to Hypergravity in Jurkat T Cells. Front Cell Dev Biol 2022;10:933984. [DOI: 10.3389/fcell.2022.933984] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Acharya A, Nemade H, Papadopoulos S, Hescheler J, Neumaier F, Schneider T, Rajendra Prasad K, Khan K, Hemmersbach R, Gusmao EG, Mizi A, Papantonis A, Sachinidis A. Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. iScience 2022;25:104577. [DOI: 10.1016/j.isci.2022.104577] [Reference Citation Analysis]
31 Bian M, Xu Z, Meng C, Zhao H, Tang X. Novel geometric design of thermoelectric leg based on 3D printing for radioisotope thermoelectric generator. Applied Thermal Engineering 2022;212:118514. [DOI: 10.1016/j.applthermaleng.2022.118514] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Pantalone D, Chiara O, Henry S, Cimbanassi S, Gupta S, Scalea T. Facing Trauma and Surgical Emergency in Space: Hemorrhagic Shock. Front Bioeng Biotechnol 2022;10:780553. [DOI: 10.3389/fbioe.2022.780553] [Reference Citation Analysis]
33 Zhang L, Dong H, Yu Y, Liu L, Zang P. Application and challenges of 3D food printing technology in manned spaceflight: a review. Int J of Food Sci Tech. [DOI: 10.1111/ijfs.15879] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Fernander MC, Parsons PK, Khaled B, Bradley A, Graves JL Jr, Thomas MD. Adaptation to simulated microgravity in Streptococcus mutans. NPJ Microgravity 2022;8:17. [PMID: 35654802 DOI: 10.1038/s41526-022-00205-8] [Reference Citation Analysis]
35 Kourilovitch M, Galarza–maldonado C. Could a simple biomarker as neutrophil-to-lymphocyte ratio reflect complex processes orchestrated by neutrophils? Journal of Translational Autoimmunity 2022. [DOI: 10.1016/j.jtauto.2022.100159] [Reference Citation Analysis]
36 Zhang B, Bai P, Wang D. Growth Behavior and Transcriptome Profile Analysis of Proteus mirabilis Strain Under Long- versus Short-Term Simulated Microgravity Environment. Polish Journal of Microbiology 2022;0. [DOI: 10.33073/pjm-2022-015] [Reference Citation Analysis]
37 Li L, Zhang L, Wang B, Xue F, Zou Y, Song D. Running Experimental Research of a Cable-Driven Astronaut on-Orbit Physical Exercise Equipment. Machines 2022;10:377. [DOI: 10.3390/machines10050377] [Reference Citation Analysis]
38 Courtney CM, Sharma S, Fallgren C, Weil MM, Chatterjee A, Nagpal P. Reversing Radiation-Induced Immunosuppression Using a New Therapeutic Modality.. [DOI: 10.1101/2022.05.03.490472] [Reference Citation Analysis]
39 Bonnefoy J, Baselet B, Moser D, Ghislin S, Miranda S, Riant E, Vermeesen R, Keiler AM, Baatout S, Choukér A, Frippiat JP. B-Cell Homeostasis Is Maintained During Two Months of Head-Down Tilt Bed Rest With or Without Antioxidant Supplementation. Front Immunol 2022;13:830662. [PMID: 35251019 DOI: 10.3389/fimmu.2022.830662] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Courtney CM, Sharma S, Fallgren C, Weil MM, Chatterjee A, Nagpal P. Reversing Radiation-Induced Immunosuppression Using a New Therapeutic Modality. Life Sciences in Space Research 2022. [DOI: 10.1016/j.lssr.2022.05.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
41 Martin D, Makedonas G, Crucian B, Peanlikhit T, Rithidech K. The use of the multidimensional protein identification technology (MudPIT) to analyze plasma proteome of astronauts collected before, during, and after spaceflights. Acta Astronautica 2022;193:9-19. [DOI: 10.1016/j.actaastro.2021.12.054] [Reference Citation Analysis]
42 Gornostaeva AN, Ratushnyi AY, Buravkova LB. Susceptibility of Healthy Volunteers’ Adaptive Immune Cells to MSC-Mediated Immunomodulation in Long-Term “Dry” Immersion Experiment. Hum Physiol 2022;48:152-160. [DOI: 10.1134/s0362119722020086] [Reference Citation Analysis]
43 Tesei D, Jewczynko A, Lynch A, Urbaniak C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life 2022;12:495. [DOI: 10.3390/life12040495] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
44 Sarkar R, Pampaloni F. In Vitro Models of Bone Marrow Remodelling and Immune Dysfunction in Space: Present State and Future Directions. Biomedicines 2022;10:766. [DOI: 10.3390/biomedicines10040766] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
45 Deane CS, da Silveira WA, Herranz R; Space Omics Topical Team. Space omics research in Europe: Contributions, geographical distribution and ESA member state funding schemes. iScience 2022;25:103920. [PMID: 35265808 DOI: 10.1016/j.isci.2022.103920] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
46 Boisseau N, Barnich N, Koechlin-Ramonatxo C. The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022;14:924. [PMID: 35267899 DOI: 10.3390/nu14050924] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Sakharkar A, Yang J. Designing a novel monitoring approach for the effects of space travel on astronauts’ health.. [DOI: 10.1101/2022.02.06.479323] [Reference Citation Analysis]
48 Giri J, Moll G. MSCs in Space: Mesenchymal Stromal Cell Therapeutics as Enabling Technology for Long-Distance Manned Space Travel. Curr Stem Cell Rep. [DOI: 10.1007/s40778-022-00207-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
49 Schulz H, Strauch SM, Richter P, Wehland M, Krüger M, Sahana J, Corydon TJ, Wise P, Baran R, Lebert M, Grimm D. Latest knowledge about changes in the proteome in microgravity. Expert Rev Proteomics 2022. [PMID: 35037812 DOI: 10.1080/14789450.2022.2030711] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Pavletić B, Runzheimer K, Siems K, Koch S, Cortesão M, Ramos-Nascimento A, Moeller R. Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment? Astrobiology 2022. [PMID: 34981957 DOI: 10.1089/ast.2021.0009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
51 Mulcahy R, Douglas G, Mccoy T, Antonsen E. Physiological Requirements of a Lunar Base Crew. Handbook of Lunar Base Design and Development 2022. [DOI: 10.1007/978-3-030-05323-9_2-1] [Reference Citation Analysis]
52 Shetgaonkar GG, Kumar L. Mitigating Radiation Effects on Humans During Space Travel: Recent Developments. Handbook of Space Pharmaceuticals 2022. [DOI: 10.1007/978-3-030-05526-4_53] [Reference Citation Analysis]
53 Shetgaonkar GG, Kumar L. Mitigating Radiation Effects on Humans During Space Travel: Recent Developments. Handbook of Space Pharmaceuticals 2022. [DOI: 10.1007/978-3-319-50909-9_53-1] [Reference Citation Analysis]
54 Pavez Loriè E, Baatout S, Choukér A, Buchheim JI, Baselet B, Dello Russo C, Wotring V, Monici M, Morbidelli L, Gagliardi D, Stingl JC, Surdo L, Yip VLM. The Future of Personalized Medicine in Space: From Observations to Countermeasures. Front Bioeng Biotechnol 2021;9:739747. [PMID: 34966726 DOI: 10.3389/fbioe.2021.739747] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
55 Ngo-anh TJ, Ullrich O. Die ISS am Anfang einer neuen Ära der Raumfahrtmedizin. Flugmedizin · Tropenmedizin · Reisemedizin - FTR 2021;28:285-294. [DOI: 10.1055/a-1686-8318] [Reference Citation Analysis]
56 Strigari L, Strolin S, Morganti AG, Bartoloni A. Dose-Effects Models for Space Radiobiology: An Overview on Dose-Effect Relationships. Front Public Health 2021;9:733337. [PMID: 34820349 DOI: 10.3389/fpubh.2021.733337] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
57 Mhatre SD, Iyer J, Puukila S, Paul AM, Tahimic CGT, Rubinstein L, Lowe M, Alwood JS, Sowa MB, Bhattacharya S, Globus RK, Ronca AE. Neuro-consequences of the spaceflight environment. Neurosci Biobehav Rev 2021:S0149-7634(21)00492-9. [PMID: 34767877 DOI: 10.1016/j.neubiorev.2021.09.055] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Jollet M, Nay K, Chopard A, Bareille MP, Beck A, Ollendorff V, Vernus B, Bonnieu A, Mariadassou M, Rué O, Derbré F, Goustard B, Koechlin-Ramonatxo C. Does Physical Inactivity Induce Significant Changes in Human Gut Microbiota? New Answers Using the Dry Immersion Hypoactivity Model. Nutrients 2021;13:3865. [PMID: 34836120 DOI: 10.3390/nu13113865] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
59 Kumar R, Sood U, Kaur J, Anand S, Gupta V, Patil KS, Lal R. The rising dominance of microbiology: what to expect in the next 15 years? Microb Biotechnol 2021. [PMID: 34713975 DOI: 10.1111/1751-7915.13953] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Kim HN, Richardson KK, Krager KJ, Ling W, Simmons P, Allen AR, Aykin-Burns N. Simulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice. Int J Mol Sci 2021;22:11711. [PMID: 34769141 DOI: 10.3390/ijms222111711] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
61 Crucian B, Valentine R, Calaway K, Miller R, Rubins K, Hopkins M, Salas Z, Krieger S, Makedonas G, Nelman-Gonzalez M, McMonigal K, Perusek G, Lehnhardt K, Easter B. Spaceflight validation of technology for point-of-care monitoring of peripheral blood WBC and differential in astronauts during space missions. Life Sci Space Res (Amst) 2021;31:29-33. [PMID: 34689947 DOI: 10.1016/j.lssr.2021.07.003] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
62 Fajardo-Cavazos P, Nicholson WL. Shelf Life and Simulated Gastrointestinal Tract Survival of Selected Commercial Probiotics During a Simulated Round-Trip Journey to Mars. Front Microbiol 2021;12:748950. [PMID: 34690999 DOI: 10.3389/fmicb.2021.748950] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
63 Dhar S, Kaeley DK, Kanan MJ, Yildirim-Ayan E. Mechano-Immunomodulation in Space: Mechanisms Involving Microgravity-Induced Changes in T Cells. Life (Basel) 2021;11:1043. [PMID: 34685414 DOI: 10.3390/life11101043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
64 Zhao S, Pei S, Wang A, Chen Y, Zhang P, Li B, Lodhi AF, Ren H, Dai R, Deng Y, Ma H. Possible role of a dual regulator of neuroinflammation and autophagy in a simulated space environment. Acta Astronautica 2021;187:181-9. [DOI: 10.1016/j.actaastro.2021.03.027] [Reference Citation Analysis]
65 Beheshti A, McDonald JT, Hada M, Takahashi A, Mason CE, Mognato M. Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human Cells. Int J Mol Sci 2021;22:10507. [PMID: 34638848 DOI: 10.3390/ijms221910507] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
66 Gómez X, Sanon S, Zambrano K, Asquel S, Bassantes M, Morales JE, Otáñez G, Pomaquero C, Villarroel S, Zurita A, Calvache C, Celi K, Contreras T, Corrales D, Naciph MB, Peña J, Caicedo A. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity 2021;7:35. [PMID: 34556658 DOI: 10.1038/s41526-021-00162-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
67 Duda KR, Newman DJ, Zhang J, Meirhaeghe N, Zhou HL. HUMAN SIDE OF SPACE EXPLORATION AND HABITATION. HANDBOOK OF HUMAN FACTORS AND ERGONOMICS 2021. [DOI: 10.1002/9781119636113.ch56] [Reference Citation Analysis]
68 Krieger SS, Zwart SR, Mehta S, Wu H, Simpson RJ, Smith SM, Crucian B. Alterations in Saliva and Plasma Cytokine Concentrations During Long-Duration Spaceflight. Front Immunol 2021;12:725748. [PMID: 34504500 DOI: 10.3389/fimmu.2021.725748] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
69 Yang J, Barrila J, Mark Ott C, King O, Bruce R, McLean RJC, Nickerson CA. Longitudinal characterization of multispecies microbial populations recovered from spaceflight potable water. NPJ Biofilms Microbiomes 2021;7:70. [PMID: 34489467 DOI: 10.1038/s41522-021-00240-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
70 Crucian BE, Makedonas G, Mehta SK, Haddon R, Scheuring RA. Reply to “Risk of severe COVID-19 infection in International Space Station astronauts despite routine pre-mission measures”. The Journal of Allergy and Clinical Immunology: In Practice 2021;9:3527-3528. [DOI: 10.1016/j.jaip.2021.06.017] [Reference Citation Analysis]
71 Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021;22:9470. [PMID: 34502375 DOI: 10.3390/ijms22179470] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
72 Bailey SM, Luxton JJ, McKenna MJ, Taylor LE, George KA, Jhavar SG, Swanson GP. Ad Astra - telomeres in space! Int J Radiat Biol 2021;:1-9. [PMID: 34270368 DOI: 10.1080/09553002.2021.1956010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
73 Rubinstein L, Schreurs AS, Torres SM, Steczina S, Lowe MG, Kiffer F, Allen AR, Ronca AE, Sowa MB, Globus RK, Tahimic CGT. Overexpression of catalase in mitochondria mitigates changes in hippocampal cytokine expression following simulated microgravity and isolation. NPJ Microgravity 2021;7:24. [PMID: 34230490 DOI: 10.1038/s41526-021-00152-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
74 Braddock M. From Target Identification to Drug Development in Space: Using the Microgravity Assist. Curr Drug Discov Technol 2020;17:45-56. [PMID: 30648510 DOI: 10.2174/1570163816666190112150014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
75 Ponomarev S, Kalinin S, Sadova A, Rykova M, Orlova K, Crucian B. Immunological Aspects of Isolation and Confinement. Front Immunol 2021;12:697435. [PMID: 34248999 DOI: 10.3389/fimmu.2021.697435] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
76 Spatz JM, Fulford MH, Tsai A, Gaudilliere D, Hedou J, Ganio E, Angst M, Aghaeepour N, Gaudilliere B. Human immune system adaptations to simulated microgravity revealed by single-cell mass cytometry. Sci Rep 2021;11:11872. [PMID: 34099760 DOI: 10.1038/s41598-021-90458-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
77 Paul AM, Overbey EG, da Silveira WA, Szewczyk N, Nishiyama NC, Pecaut MJ, Anand S, Galazka JM, Mao XW. Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity. Sci Rep 2021;11:11452. [PMID: 34075076 DOI: 10.1038/s41598-021-90439-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
78 da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, Kidane Y, Rathi KS, Smith SM, Stear B, Ying Y, Zhang Y, Foox J, Zanello S, Crucian B, Wang D, Nugent A, Costa HA, Zwart SR, Schrepfer S, Elworth RAL, Sapoval N, Treangen T, MacKay M, Gokhale NS, Horner SM, Singh LN, Wallace DC, Willey JS, Schisler JC, Meller R, McDonald JT, Fisch KM, Hardiman G, Taylor D, Mason CE, Costes SV, Beheshti A. Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell 2020;183:1185-1201.e20. [PMID: 33242417 DOI: 10.1016/j.cell.2020.11.002] [Cited by in Crossref: 76] [Cited by in F6Publishing: 84] [Article Influence: 38.0] [Reference Citation Analysis]
79 Rubinstein L, Paul AM, Houseman C, Abegaz M, Tabares Ruiz S, O'Neil N, Kunis G, Ofir R, Cohen J, Ronca AE, Globus RK, Tahimic CGT. Placenta-Expanded Stromal Cell Therapy in a Rodent Model of Simulated Weightlessness. Cells 2021;10:940. [PMID: 33921854 DOI: 10.3390/cells10040940] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
80 Simões MF, Antunes A. Microbial Pathogenicity in Space. Pathogens 2021;10:450. [PMID: 33918768 DOI: 10.3390/pathogens10040450] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
81 Cinelli I, Russomano T. Advances in Space Medicine Applied to Pandemics on Earth. Space: Science & Technology 2021;2021:1-3. [DOI: 10.34133/2021/9821480] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Ludtka C, Silberman J, Moore E, Allen JB. Macrophages in microgravity: the impact of space on immune cells. NPJ Microgravity 2021;7:13. [PMID: 33790288 DOI: 10.1038/s41526-021-00141-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
83 Nielsen S, White K, Preiss K, Peart D, Gianoulias K, Juel R, Sutton J, McKinney J, Bender J, Pinc G, Bergren K, Gans W, Kelley J, McQuaid M. Growth and Antifungal Resistance of the Pathogenic Yeast, Candida Albicans, in the Microgravity Environment of the International Space Station: An Aggregate of Multiple Flight Experiences. Life (Basel) 2021;11:283. [PMID: 33801697 DOI: 10.3390/life11040283] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
84 Laiakis EC, Shuryak I, Deziel A, Wang YW, Barnette BL, Yu Y, Ullrich RL, Fornace AJ Jr, Emmett MR. Effects of Low Dose Space Radiation Exposures on the Splenic Metabolome. Int J Mol Sci 2021;22:3070. [PMID: 33802822 DOI: 10.3390/ijms22063070] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
85 Bonnefoy J, Ghislin S, Beyrend J, Coste F, Calcagno G, Lartaud I, Gauquelin-Koch G, Poussier S, Frippiat JP. Gravitational Experimental Platform for Animal Models, a New Platform at ESA's Terrestrial Facilities to Study the Effects of Micro- and Hypergravity on Aquatic and Rodent Animal Models. Int J Mol Sci 2021;22:2961. [PMID: 33803957 DOI: 10.3390/ijms22062961] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
86 Barrila J, Sarker SF, Hansmeier N, Yang S, Buss K, Briones N, Park J, Davis RR, Forsyth RJ, Ott CM, Sato K, Kosnik C, Yang A, Shimoda C, Rayl N, Ly D, Landenberger A, Wilson SD, Yamazaki N, Steel J, Montano C, Halden RU, Cannon T, Castro-Wallace SL, Nickerson CA. Evaluating the effect of spaceflight on the host-pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium. NPJ Microgravity 2021;7:9. [PMID: 33750813 DOI: 10.1038/s41526-021-00136-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
87 Sun Y, Kuang Y, Zuo Z. The Emerging Role of Macrophages in Immune System Dysfunction under Real and Simulated Microgravity Conditions. Int J Mol Sci 2021;22:2333. [PMID: 33652750 DOI: 10.3390/ijms22052333] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
88 Smith CJ, Bilbo SD. Sickness and the Social Brain: Love in the Time of COVID. Front Psychiatry 2021;12:633664. [PMID: 33692712 DOI: 10.3389/fpsyt.2021.633664] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
89 Laranjeiro R, Harinath G, Pollard AK, Gaffney CJ, Deane CS, Vanapalli SA, Etheridge T, Szewczyk NJ, Driscoll M. Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans. iScience 2021;24:102105. [PMID: 33659873 DOI: 10.1016/j.isci.2021.102105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 Michalettou TD, Michalopoulos I, Costes SV, Hellweg CE, Hada M, Georgakilas AG. A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression. Life (Basel) 2021;11:115. [PMID: 33546472 DOI: 10.3390/life11020115] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
91 Green MJ, Aylott JW, Williams P, Ghaemmaghami AM, Williams PM. Immunity in Space: Prokaryote Adaptations and Immune Response in Microgravity. Life (Basel) 2021;11:112. [PMID: 33540536 DOI: 10.3390/life11020112] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
92 Briguglio M. Nutritional Orthopedics and Space Nutrition as Two Sides of the Same Coin: A Scoping Review. Nutrients 2021;13:483. [PMID: 33535596 DOI: 10.3390/nu13020483] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
93 Inglesby DC, Antonucci MU, Spampinato MV, Collins HR, Meyer TA, Schlosser RJ, Shimada K, Roberts DR. Spaceflight-Associated Changes in the Opacification of the Paranasal Sinuses and Mastoid Air Cells in Astronauts. JAMA Otolaryngol Head Neck Surg 2020;146:571-7. [PMID: 32215610 DOI: 10.1001/jamaoto.2020.0228] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
94 Shao D, Ye L, Zhu B, Li Q, Yang H, Shi J, Huang Q, Zhao W. Mechanisms of the Effect of Simulated Microgravity on the Cytotoxicity of NK Cells Following the DNA Methylation of NKG2D and the Expression of DAP10. Microgravity Sci Technol 2021;33. [DOI: 10.1007/s12217-020-09863-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
95 Pearson DD, Provencher L, Brownlee PM, Goodarzi AA. Modern sources of environmental ionizing radiation exposure and associated health consequences. Genome Stability 2021. [DOI: 10.1016/b978-0-323-85679-9.00032-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
96 Zhu L, Nie L, Xie S, Li M, Zhu C, Qiu X, Kuang J, Liu C, Lu C, Li W, Meng E, Zhang D, Zhu L. Attenuation of Antiviral Immune Response Caused by Perturbation of TRIM25-Mediated RIG-I Activation under Simulated Microgravity. Cell Rep 2021;34:108600. [PMID: 33406425 DOI: 10.1016/j.celrep.2020.108600] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
97 Schroeder GS. Spaceflight Nutritional Support. Handbook of Life Support Systems for Spacecraft and Extraterrestrial Habitats 2021. [DOI: 10.1007/978-3-319-09575-2_25-1] [Reference Citation Analysis]
98 Reizis E, Cai D, Serpas L, Gleason EJ, Martin K, Foley KD, Copeland DS, Kraves S, Saavedra EA. Toward the Analysis of Lymphocyte Development in Space: PCR-Based Amplification of T-Cell Receptor Excision Circles (TRECs) Aboard the International Space Station. Gravitational and Space Research 2021;9:159-163. [DOI: 10.2478/gsr-2021-0012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
99 Hariom SK, Ravi A, Mohan GR, Pochiraju HD, Chattopadhyay S, Nelson EJR. Animal physiology across the gravity continuum. Acta Astronautica 2021;178:522-35. [DOI: 10.1016/j.actaastro.2020.09.044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
100 Ruyters G, Braun M, Stang KM. Success Stories: Incremental Progress and Scientific Breakthroughs in Life Science Research. SpringerBriefs in Space Life Sciences 2021. [DOI: 10.1007/978-3-030-74022-1_3] [Reference Citation Analysis]
101 Ferranti F, Del Bianco M, Pacelli C. Advantages and Limitations of Current Microgravity Platforms for Space Biology Research. Applied Sciences 2021;11:68. [DOI: 10.3390/app11010068] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
102 Willis CRG, Szewczyk NJ, Costes SV, Udranszky IA, Reinsch SS, Etheridge T, Conley CA. Comparative Transcriptomics Identifies Neuronal and Metabolic Adaptations to Hypergravity and Microgravity in Caenorhabditis elegans. iScience 2020;23:101734. [PMID: 33376968 DOI: 10.1016/j.isci.2020.101734] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
103 Paul AM, Cheng-Campbell M, Blaber EA, Anand S, Bhattacharya S, Zwart SR, Crucian BE, Smith SM, Meller R, Grabham P, Beheshti A. Beyond Low-Earth Orbit: Characterizing Immune and microRNA Differentials following Simulated Deep Spaceflight Conditions in Mice. iScience 2020;23:101747. [PMID: 33376970 DOI: 10.1016/j.isci.2020.101747] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
104 Luxton JJ, McKenna MJ, Lewis A, Taylor LE, George KA, Dixit SM, Moniz M, Benegas W, Mackay MJ, Mozsary C, Butler D, Bezdan D, Meydan C, Crucian BE, Zwart SR, Smith SM, Mason CE, Bailey SM. Telomere Length Dynamics and DNA Damage Responses Associated with Long-Duration Spaceflight. Cell Rep 2020;33:108457. [PMID: 33242406 DOI: 10.1016/j.celrep.2020.108457] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
105 Laranjeiro R, Harinath G, Pollard AK, Gaffney CJ, Deane CS, Vanapalli SA, Etheridge T, Szewczyk NJ, Driscoll M. Spaceflight Affects Neuronal Morphology and Alters Transcellular Degradation of Neuronal Debris in Adult Caenorhabditis elegans.. [DOI: 10.1101/2020.11.10.377143] [Reference Citation Analysis]
106 Patel ZS, Brunstetter TJ, Tarver WJ, Whitmire AM, Zwart SR, Smith SM, Huff JL. Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. NPJ Microgravity 2020;6:33. [PMID: 33298950 DOI: 10.1038/s41526-020-00124-6] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 20.0] [Reference Citation Analysis]
107 Paul AM, Mhatre SD, Cekanaviciute E, Schreurs AS, Tahimic CGT, Globus RK, Anand S, Crucian BE, Bhattacharya S. Neutrophil-to-Lymphocyte Ratio: A Biomarker to Monitor the Immune Status of Astronauts. Front Immunol 2020;11:564950. [PMID: 33224136 DOI: 10.3389/fimmu.2020.564950] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
108 Alauzet C, Cunat L, Wack M, Lanfumey L, Legrand-Frossi C, Lozniewski A, Agrinier N, Cailliez-Grimal C, Frippiat JP. Impact of a Model Used to Simulate Chronic Socio-Environmental Stressors Encountered during Spaceflight on Murine Intestinal Microbiota. Int J Mol Sci 2020;21:E7863. [PMID: 33114008 DOI: 10.3390/ijms21217863] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
109 Carnell LS. Spaceflight medical countermeasures: a strategic approach for mitigating effects from solar particle events. International Journal of Radiation Biology. [DOI: 10.1080/09553002.2020.1820603] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
110 Buchheim JI, Ghislin S, Ouzren N, Albuisson E, Vanet A, Matzel S, Ponomarev S, Rykova M, Choukér A, Frippiat JP. Plasticity of the human IgM repertoire in response to long-term spaceflight. FASEB J 2020;34:16144-62. [PMID: 33047384 DOI: 10.1096/fj.202001403RR] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
111 Nassef MZ, Melnik D, Kopp S, Sahana J, Infanger M, Lützenberg R, Relja B, Wehland M, Grimm D, Krüger M. Breast Cancer Cells in Microgravity: New Aspects for Cancer Research. Int J Mol Sci 2020;21:E7345. [PMID: 33027908 DOI: 10.3390/ijms21197345] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
112 Fisher R, Baselet B, Vermeesen R, Moreels M, Baatout S, Rahiman F, Miles X, Nair S, du Plessis P, Engelbrecht M, Ndimba RJ, Bolcaen J, Nieto-camero J, de Kock E, Vandevoorde C. Immunological Changes During Space Travel: A Ground-Based Evaluation of the Impact of Neutron Dose Rate on Plasma Cytokine Levels in Human Whole Blood Cultures. Front Phys 2020;8. [DOI: 10.3389/fphy.2020.568124] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
113 Makedonas G, Mehta SK, Scheuring RA, Haddon R, Crucian BE. SARS-CoV-2 Pandemic Impacts on NASA Ground Operations to Protect ISS Astronauts. J Allergy Clin Immunol Pract 2020;8:3247-50. [PMID: 32971311 DOI: 10.1016/j.jaip.2020.08.064] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
114 Buchovec I, Gricajeva A, Kalėdienė L, Vitta P. Antimicrobial Photoinactivation Approach Based on Natural Agents for Control of Bacteria Biofilms in Spacecraft. Int J Mol Sci 2020;21:E6932. [PMID: 32967302 DOI: 10.3390/ijms21186932] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
115 Wang J, Han C, Lu Z, Ge P, Cui Y, Zhao D, Yang X, Wu B, Qiang L, Zhang Y, Chai Q, Lei Z, Li L, Hua Liu C, Zhang L. Simulated microgravity suppresses MAPK pathway-mediated innate immune response to bacterial infection and induces gut microbiota dysbiosis. FASEB J 2020;34:14631-44. [PMID: 32918764 DOI: 10.1096/fj.202001428R] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
116 Poon C. Factors implicating the validity and interpretation of mechanobiology studies in simulated microgravity environments. Engineering Reports 2020;2. [DOI: 10.1002/eng2.12242] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
117 Turroni S, Magnani M, Kc P, Lesnik P, Vidal H, Heer M. Gut Microbiome and Space Travelers' Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions. Front Physiol 2020;11:553929. [PMID: 33013480 DOI: 10.3389/fphys.2020.553929] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
118 Mylabathula PL, Li L, Bigley AB, Markofski MM, Crucian BE, Mehta SK, Pierson DL, Laughlin MS, Rezvani K, Simpson RJ. Simulated microgravity disarms human NK-cells and inhibits anti-tumor cytotoxicity in vitro. Acta Astronautica 2020;174:32-40. [DOI: 10.1016/j.actaastro.2020.03.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
119 Baba S, Smith T, Hellmann J, Bhatnagar A, Carter K, Vanhoover A, Caruso J. Space Flight Diet-Induced Deficiency and Response to Gravity-Free Resistive Exercise. Nutrients 2020;12:E2400. [PMID: 32796546 DOI: 10.3390/nu12082400] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
120 Wischer D, Schneider D, Poehlein A, Herrmann F, Oruc H, Meinhardt J, Wagner O, Ahmed R, Kharin S, Novikova N, Haag R, Daniel R, Grohmann E. Novel Antimicrobial Cellulose Fleece Inhibits Growth of Human-Derived Biofilm-Forming Staphylococci During the SIRIUS19 Simulated Space Mission. Front Microbiol 2020;11:1626. [PMID: 32849336 DOI: 10.3389/fmicb.2020.01626] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
121 Wojcik P, Batliwala S, Rowsey T, Galdamez LA, Lee AG. Spaceflight-Associated Neuro-ocular Syndrome (SANS): a review of proposed mechanisms and analogs. Expert Review of Ophthalmology 2020;15:249-58. [DOI: 10.1080/17469899.2020.1787155] [Reference Citation Analysis]
122 Damiot A, Pinto AJ, Turner JE, Gualano B. Immunological Implications of Physical Inactivity among Older Adults during the COVID-19 Pandemic. Gerontology 2020;66:431-8. [PMID: 32585674 DOI: 10.1159/000509216] [Cited by in Crossref: 45] [Cited by in F6Publishing: 53] [Article Influence: 15.0] [Reference Citation Analysis]
123 Fava M, Leuti A, Maccarrone M. Lipid Signalling in Human Immune Response and Bone Remodelling under Microgravity. Applied Sciences 2020;10:4309. [DOI: 10.3390/app10124309] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
124 Crucian BE, Makedonas G, Sams CF, Pierson DL, Simpson R, Stowe RP, Smith SM, Zwart SR, Krieger SS, Rooney B, Douglas G, Downs M, Nelman-Gonzalez M, Williams TJ, Mehta S. Countermeasures-based Improvements in Stress, Immune System Dysregulation and Latent Herpesvirus Reactivation onboard the International Space Station - Relevance for Deep Space Missions and Terrestrial Medicine. Neurosci Biobehav Rev 2020;115:68-76. [PMID: 32464118 DOI: 10.1016/j.neubiorev.2020.05.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
125 Akiyama T, Horie K, Hinoi E, Hiraiwa M, Kato A, Maekawa Y, Takahashi A, Furukawa S. How does spaceflight affect the acquired immune system? NPJ Microgravity 2020;6:14. [PMID: 32411817 DOI: 10.1038/s41526-020-0104-1] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
126 Ponomarev SA, Rykova MP, Antropova EN, Kutko OV, Kalinin SA, Shulgina SM, Sadova AA, Orlova KD, Schmarov VA, Kiseleva DD. Cytokine Profile in Volunteers during a 21-Day Dry Immersion without Countermeasures. Hum Physiol 2020;46:175-181. [DOI: 10.1134/s0362119720020139] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
127 McDonald JT, Stainforth R, Miller J, Cahill T, da Silveira WA, Rathi KS, Hardiman G, Taylor D, Costes SV, Chauhan V, Meller R, Beheshti A. NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers (Basel) 2020;12:E381. [PMID: 32045996 DOI: 10.3390/cancers12020381] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
128 Iwase S, Nishimura N, Tanaka K, Mano T. Effects of Microgravity on Human Physiology. Beyond LEO - Human Health Issues for Deep Space Exploration [Working Title] 2020. [DOI: 10.5772/intechopen.90700] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
129 Thiel CS, Christoffel S, Tauber S, Vahlensieck C, Zélicourt D, Layer LE, Lauber B, Polzer J, Ullrich O. Rapid Cellular Perception of Gravitational Forces in Human Jurkat T Cells and Transduction into Gene Expression Regulation. Int J Mol Sci 2020;21:E514. [PMID: 31947583 DOI: 10.3390/ijms21020514] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
130 Agha NH, Mehta SK, Rooney BV, Laughlin MS, Markofski MM, Pierson DL, Katsanis E, Crucian BE, Simpson RJ. Exercise as a countermeasure for latent viral reactivation during long duration space flight. FASEB J 2020;34:2869-81. [PMID: 31908052 DOI: 10.1096/fj.201902327R] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
131 Heer M, Baecker N, Smith SM, Zwart SR. Nutritional Countermeasures for Spaceflight-Related Stress. Stress Challenges and Immunity in Space 2020. [DOI: 10.1007/978-3-030-16996-1_33] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
132 Horve PF, Lloyd S, Mhuireach GA, Dietz L, Fretz M, MacCrone G, Van Den Wymelenberg K, Ishaq SL. Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. J Expo Sci Environ Epidemiol 2020;30:219-35. [PMID: 31308484 DOI: 10.1038/s41370-019-0157-y] [Cited by in Crossref: 50] [Cited by in F6Publishing: 53] [Article Influence: 16.7] [Reference Citation Analysis]
133 Buchheim J, Feuerecker M, Choukér A. Innate Immunity Under the Exposome of Space Flight. Stress Challenges and Immunity in Space 2020. [DOI: 10.1007/978-3-030-16996-1_12] [Reference Citation Analysis]
134 Ponomarev S, Kutko O, Rykova M, Kalinin S, Antropova E, Sadova A, Orlova K, Shulgina S. Changes in the cellular component of the human innate immunity system in short-term isolation. Acta Astronautica 2020;166:89-92. [DOI: 10.1016/j.actaastro.2019.10.012] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
135 Ngo-anh TJ, Rossiter A, Suvorov A, Vassilieva G, Gushin V. Mars500: The First Preparation of Long-Duration Space Exploration Missions—Results and Implications for a Holistic Stress and Immune Research Approach. Stress Challenges and Immunity in Space 2020. [DOI: 10.1007/978-3-030-16996-1_37] [Reference Citation Analysis]
136 Campa R. Anti-Aging Medicine as a Game Changer for Long-Lasting Space Missions. Human Enhancements for Space Missions 2020. [DOI: 10.1007/978-3-030-42036-9_10] [Reference Citation Analysis]
137 Bueno J. Nanotechnology in the Discovery of New Antimicrobial Drugs: Is a New Scientific Revolution Possible? Nanotechnology in the Life Sciences 2020. [DOI: 10.1007/978-3-030-43855-5_7] [Reference Citation Analysis]
138 Sandal GM, Leon GR. Psychological Countermeasures. Stress Challenges and Immunity in Space 2020. [DOI: 10.1007/978-3-030-16996-1_31] [Reference Citation Analysis]
139 Le TT, Ropars A, Sundaresan A, Crucian B, Choukér A, Frippiat J. Pharmacological Countermeasures to Spaceflight-Induced Alterations of the Immune System. Stress Challenges and Immunity in Space 2020. [DOI: 10.1007/978-3-030-16996-1_35] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
140 Heppener M. Moon, Mars and Beyond. Stress Challenges and Immunity in Space 2020. [DOI: 10.1007/978-3-030-16996-1_39] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
141 Mcewen BS, Karatsoreos IN. What Is Stress? Stress Challenges and Immunity in Space 2020. [DOI: 10.1007/978-3-030-16996-1_4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
142 Yu H, Chong SK, Hassanbhai AM, Teng Y, Balachander G, Muthukumaran P, Wen F, Teoh SH. Principles of bioreactor design for tissue engineering. Principles of Tissue Engineering. Elsevier; 2020. pp. 179-203. [DOI: 10.1016/b978-0-12-818422-6.00012-5] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
143 Frippiat J, Ponomarev SA, Heer M, Crucian B, Choukér A. Preventive and Therapeutic Strategies to Counter Immune System Dysfunctioning During Spaceflight. Stress Challenges and Immunity in Space 2020. [DOI: 10.1007/978-3-030-16996-1_30] [Reference Citation Analysis]
144 Ethiraj P, Ottinger AM, Singh T, Singh A, Haire KM, Reddy SV. Proteasome inhibition suppress microgravity elevated RANK signaling during osteoclast differentiation. Cytokine 2020;125:154821. [DOI: 10.1016/j.cyto.2019.154821] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
145 Lorenzi H. Microbiome and Immunity: A Critical Link for Long-Duration Space Exploration Missions. Stress Challenges and Immunity in Space 2020. [DOI: 10.1007/978-3-030-16996-1_34] [Reference Citation Analysis]
146 Horie K, Kato T, Kudo T, Sasanuma H, Miyauchi M, Akiyama N, Miyao T, Seki T, Ishikawa T, Takakura Y, Shirakawa M, Shiba D, Hamada M, Jeon H, Yoshida N, Inoue JI, Muratani M, Takahashi S, Ohno H, Akiyama T. Impact of spaceflight on the murine thymus and mitigation by exposure to artificial gravity during spaceflight. Sci Rep 2019;9:19866. [PMID: 31882694 DOI: 10.1038/s41598-019-56432-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
147 Low LA, Giulianotti MA. Tissue Chips in Space: Modeling Human Diseases in Microgravity. Pharm Res 2019;37:8. [PMID: 31848830 DOI: 10.1007/s11095-019-2742-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
148 Beheshti A, Chakravarty K, Fogle H, Fazelinia H, Silveira WAD, Boyko V, Polo SL, Saravia-Butler AM, Hardiman G, Taylor D, Galazka JM, Costes SV. Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver. Sci Rep 2019;9:19195. [PMID: 31844325 DOI: 10.1038/s41598-019-55869-2] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
149 Agha NH, Baker FL, Kunz HE, Spielmann G, Mylabathula PL, Rooney BV, Mehta SK, Pierson DL, Laughlin MS, Markofski MM, Crucian BE, Simpson RJ. Salivary antimicrobial proteins and stress biomarkers are elevated during a 6-month mission to the International Space Station. J Appl Physiol (1985) 2020;128:264-75. [PMID: 31751178 DOI: 10.1152/japplphysiol.00560.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
150 Iosim S, MacKay M, Westover C, Mason CE. Translating current biomedical therapies for long duration, deep space missions. Precis Clin Med 2019;2:259-69. [PMID: 31886035 DOI: 10.1093/pcmedi/pbz022] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
151 Tackett N, Bradley JH, Moore EK, Baker SH, Minter SL, DiGiacinto B, Arnold JP, Gregg RK. Prolonged exposure to simulated microgravity diminishes dendritic cell immunogenicity. Sci Rep 2019;9:13825. [PMID: 31554863 DOI: 10.1038/s41598-019-50311-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
152 Jeandel J, Fonte C, Calcagno G, Bonnefoy J, Ghislin S, Kaminski S, Frippiat J. Spaceflight-Associated Immune System Modifications. Beyond LEO - Human Health Issues for Deep Space Exploration [Working Title] 2019. [DOI: 10.5772/intechopen.88880] [Reference Citation Analysis]
153 Tahimic CGT, Paul AM, Schreurs AS, Torres SM, Rubinstein L, Steczina S, Lowe M, Bhattacharya S, Alwood JS, Ronca AE, Globus RK. Influence of Social Isolation During Prolonged Simulated Weightlessness by Hindlimb Unloading. Front Physiol 2019;10:1147. [PMID: 31572207 DOI: 10.3389/fphys.2019.01147] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
154 Bai P, Zhang B, Zhao X, Li D, Yu Y, Zhang X, Huang B, Liu C. Decreased metabolism and increased tolerance to extreme environments in Staphylococcus warneri during long-term spaceflight. Microbiologyopen 2019;8:e917. [PMID: 31414557 DOI: 10.1002/mbo3.917] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
155 Moser D, Sun SJ, Li N, Biere K, Hoerl M, Matzel S, Feuerecker M, Buchheim JI, Strewe C, Thiel CS, Gao YX, Wang CZ, Ullrich O, Long M, Choukèr A. Cells´ Flow and Immune Cell Priming under alternating g-forces in Parabolic Flight. Sci Rep 2019;9:11276. [PMID: 31375732 DOI: 10.1038/s41598-019-47655-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
156 Karl JP, Armstrong NJ, McClung HL, Player RA, Rood JC, Racicot K, Soares JW, Montain SJ. A diet of U.S. military food rations alters gut microbiota composition and does not increase intestinal permeability. J Nutr Biochem 2019;72:108217. [PMID: 31473505 DOI: 10.1016/j.jnutbio.2019.108217] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
157 Azetsu Y, Chatani M, Dodo Y, Karakawa A, Sakai N, Negishi-Koga T, Takami M. Treatment with synthetic glucocorticoid impairs bone metabolism, as revealed by in vivo imaging of osteoblasts and osteoclasts in medaka fish. Biomed Pharmacother 2019;118:109101. [PMID: 31315073 DOI: 10.1016/j.biopha.2019.109101] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
158 Voorhies AA, Mark Ott C, Mehta S, Pierson DL, Crucian BE, Feiveson A, Oubre CM, Torralba M, Moncera K, Zhang Y, Zurek E, Lorenzi HA. Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci Rep 2019;9:9911. [PMID: 31289321 DOI: 10.1038/s41598-019-46303-8] [Cited by in Crossref: 82] [Cited by in F6Publishing: 85] [Article Influence: 20.5] [Reference Citation Analysis]
159 Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, McKenna MJ, Meydan C, Mishra T, Nasrini J, Piening BD, Rizzardi LF, Sharma K, Siamwala JH, Taylor L, Vitaterna MH, Afkarian M, Afshinnekoo E, Ahadi S, Ambati A, Arya M, Bezdan D, Callahan CM, Chen S, Choi AMK, Chlipala GE, Contrepois K, Covington M, Crucian BE, De Vivo I, Dinges DF, Ebert DJ, Feinberg JI, Gandara JA, George KA, Goutsias J, Grills GS, Hargens AR, Heer M, Hillary RP, Hoofnagle AN, Hook VYH, Jenkinson G, Jiang P, Keshavarzian A, Laurie SS, Lee-McMullen B, Lumpkins SB, MacKay M, Maienschein-Cline MG, Melnick AM, Moore TM, Nakahira K, Patel HH, Pietrzyk R, Rao V, Saito R, Salins DN, Schilling JM, Sears DD, Sheridan CK, Stenger MB, Tryggvadottir R, Urban AE, Vaisar T, Van Espen B, Zhang J, Ziegler MG, Zwart SR, Charles JB, Kundrot CE, Scott GBI, Bailey SM, Basner M, Feinberg AP, Lee SMC, Mason CE, Mignot E, Rana BK, Smith SM, Snyder MP, Turek FW. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 2019;364:eaau8650. [PMID: 30975860 DOI: 10.1126/science.aau8650] [Cited by in Crossref: 284] [Cited by in F6Publishing: 329] [Article Influence: 71.0] [Reference Citation Analysis]
160 Stervbo U, Roch T, Westhoff TH, Gayova L, Kurchenko A, Seibert FS, Babel N. Repeated Changes to the Gravitational Field Negatively Affect the Serum Concentration of Select Growth Factors and Cytokines. Front Physiol 2019;10:402. [PMID: 31057415 DOI: 10.3389/fphys.2019.00402] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
161 Strewe C, Moser D, Buchheim JI, Gunga HC, Stahn A, Crucian BE, Fiedel B, Bauer H, Gössmann-Lang P, Thieme D, Kohlberg E, Choukèr A, Feuerecker M. Sex differences in stress and immune responses during confinement in Antarctica. Biol Sex Differ 2019;10:20. [PMID: 30992051 DOI: 10.1186/s13293-019-0231-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
162 Guéguinou N, Jeandel J, Kaminski S, Baatout S, Ghislin S, Frippiat JP. Modulation of Iberian Ribbed Newt Complement Component C3 by Stressors Similar to those Encountered during a Stay Onboard the International Space Station. Int J Mol Sci 2019;20:E1579. [PMID: 30934839 DOI: 10.3390/ijms20071579] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
163 Zhang B, Bai P, Zhao X, Yu Y, Zhang X, Li D, Liu C. Increased growth rate and amikacin resistance of Salmonella enteritidis after one-month spaceflight on China's Shenzhou-11 spacecraft. Microbiologyopen 2019;8:e00833. [PMID: 30912318 DOI: 10.1002/mbo3.833] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
164 Zuniga JM, Thompson M. Applications of antimicrobial 3D printing materials in space. Journal of 3D Printing in Medicine 2019;3:5-9. [DOI: 10.2217/3dp-2019-0001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
165 Takahashi A, Wakihata S, Ma L, Adachi T, Hirose H, Yoshida Y, Ohira Y. Temporary Loading Prevents Cancer Progression and Immune Organ Atrophy Induced by Hind-Limb Unloading in Mice. Int J Mol Sci 2018;19:E3959. [PMID: 30544854 DOI: 10.3390/ijms19123959] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
166 Spielmann G, Agha N, Kunz H, Simpson RJ, Crucian B, Mehta S, Laughlin M, Campbell J. B cell homeostasis is maintained during long-duration spaceflight. J Appl Physiol (1985) 2019;126:469-76. [PMID: 30496712 DOI: 10.1152/japplphysiol.00789.2018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
167 Strollo F, Gentile S, Strollo G, Mambro A, Vernikos J. Recent Progress in Space Physiology and Aging. Front Physiol 2018;9:1551. [PMID: 30483144 DOI: 10.3389/fphys.2018.01551] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
168 Bigley AB, Agha NH, Baker FL, Spielmann G, Kunz HE, Mylabathula PL, Rooney BV, Laughlin MS, Mehta SK, Pierson DL, Crucian BE, Simpson RJ. NK cell function is impaired during long-duration spaceflight. J Appl Physiol (1985) 2019;126:842-53. [PMID: 30382809 DOI: 10.1152/japplphysiol.00761.2018] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 6.4] [Reference Citation Analysis]
169 Bevelacqua JJ, Mortazavi SMJ. Commentary: Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions. Front Immunol. 2018;9:2024. [PMID: 30233600 DOI: 10.3389/fimmu.2018.02024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
170 Yang J, Zhang G, Dong D, Shang P. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models. Int J Mol Sci 2018;19:E2608. [PMID: 30177626 DOI: 10.3390/ijms19092608] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
171 Makedonas G, Chouker A, Mehta S, Simpson R, Stowe R, Sams C, Pierson D, Crucian B. Mechanistic Clues to Overcome Spaceflight-Induced Immune Dysregulation. Curr Pathobiol Rep 2018;6:185-92. [DOI: 10.1007/s40139-018-0178-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]