BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li D, Yang J, Yang Y, Liu J, Li H, Li R, Cao C, Shi L, Wu W, He K. A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs. Front Genet 2021;12:613197. [PMID: 34012461 DOI: 10.3389/fgene.2021.613197] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Piccinini AM, Krauß S. Editorial: In celebration of women in science: RNA networks and biology. Front Mol Biosci 2023;10:1162378. [PMID: 36895806 DOI: 10.3389/fmolb.2023.1162378] [Reference Citation Analysis]
2 Jain N, Shiv A, Sinha N, Harikrishna, Singh PK, Prasad P, Balyan HS, Gupta PK. Leaf rust responsive miRNA and their target genes in wheat. Funct Integr Genomics 2022;23:14. [PMID: 36550370 DOI: 10.1007/s10142-022-00928-7] [Reference Citation Analysis]
3 Lian MQ, Chng WH, Liang J, Yeo HQ, Lee CK, Belaid M, Tollemeto M, Wacker MG, Czarny B, Pastorin G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. J Extracell Vesicles 2022;11:e12283. [PMID: 36519808 DOI: 10.1002/jev2.12283] [Reference Citation Analysis]
4 Roglia V, Potestà M, Minchella A, Bruno SP, Bernardini R, Lettieri-barbato D, Iacovelli F, Gismondi A, Aquilano K, Canini A, Muleo R, Colizzi V, Mattei M, Minutolo A, Montesano C. Exogenous miRNAs from Moringa oleifera Lam. recover a dysregulated lipid metabolism. Front Mol Biosci 2022;9. [DOI: 10.3389/fmolb.2022.1012359] [Reference Citation Analysis]
5 Sun M, Xu S, Mei Y, Li J, Gu Y, Zhang W, Wang J. MicroRNAs in Medicinal Plants. Int J Mol Sci 2022;23:10477. [PMID: 36142389 DOI: 10.3390/ijms231810477] [Reference Citation Analysis]
6 Manvar T, Mangukia N, Bhavsar M, Rawal R. PIPER BETLE: RETROSPECTIVE VALUE OF GREEN GOLD. Towards Excell 2022. [DOI: 10.37867/te140246] [Reference Citation Analysis]
7 Jha N, Mangukia N, Gadhavi H, Patel M, Bhavsar M, Rawal R, Patel S. Small RNA sequencing and identification of papaya (Carica papaya L.) miRNAs with potential cross-kingdom human gene targets. Mol Genet Genomics. [DOI: 10.1007/s00438-022-01904-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Bhavsar M, Mangukia N, Manvar T, Mankad A. GENOME-WIDE IDENTIFICATION OF NICOTIANA TABACUM MIRNAS AND THEIR ROLE IN HUMAN HEALTH – A COMPUTATIONAL GENOMICS ASSESSMENT. Towards Excell 2022. [DOI: 10.37867/te1401141] [Reference Citation Analysis]
9 Qin X, Wang X, Xu K, Zhang Y, Ren X, Qi B, Liang Q, Yang X, Li L, Li S. Digestion of Plant Dietary miRNAs Starts in the Mouth under the Protection of Coingested Food Components and Plant-Derived Exosome-like Nanoparticles. J Agric Food Chem 2022. [PMID: 35352925 DOI: 10.1021/acs.jafc.1c07730] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Kasarello K, Köhling I, Kosowska A, Pucia K, Lukasik A, Cudnoch-jedrzejewska A, Paczek L, Zielenkiewicz U, Zielenkiewicz P. The Anti-Inflammatory Effect of Cabbage Leaves Explained by the Influence of bol-miRNA172a on FAN Expression. Front Pharmacol 2022;13:846830. [DOI: 10.3389/fphar.2022.846830] [Reference Citation Analysis]
11 Bhavsar M, Mangukia N, Mankad A. DECIPHERING THE ROLE OF EXPERIMENTALLY VALIDATED NICOTIANA TABACUM (TOBACCO) MIRNAS IN HUMAN HEALTH – A COMPUTATIONAL GENOMICS ASSESSMENT. Towards Excell 2021. [DOI: 10.37867/te130366] [Reference Citation Analysis]