BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Martel G, Dutar P, Epelbaum J, Viollet C. Somatostatinergic systems: an update on brain functions in normal and pathological aging. Front Endocrinol (Lausanne) 2012;3:154. [PMID: 23230430 DOI: 10.3389/fendo.2012.00154] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Balog M, Anderson A, Gurumurthy CB, Quadros RM, Korade Z, Mirnics K. Knock-in mouse models for studying somatostatin and cholecystokinin expressing cells. J Neurosci Methods 2022;381:109704. [PMID: 36070817 DOI: 10.1016/j.jneumeth.2022.109704] [Reference Citation Analysis]
2 Casello SM, Flores RJ, Yarur HE, Wang H, Awanyai M, Arenivar MA, Jaime-lara RB, Bravo-rivera H, Tejeda HA. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits 2022;16:796443. [DOI: 10.3389/fncir.2022.796443] [Reference Citation Analysis]
3 Yao HK, Guet-McCreight A, Mazza F, Moradi Chameh H, Prevot TD, Griffiths JD, Tripathy SJ, Valiante TA, Sibille E, Hay E. Reduced inhibition in depression impairs stimulus processing in human cortical microcircuits. Cell Rep 2022;38:110232. [PMID: 35021088 DOI: 10.1016/j.celrep.2021.110232] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
4 Racine AS, Michon FX, Laplante I, Lacaille JC. Somatostatin contributes to long-term potentiation at excitatory synapses onto hippocampal somatostatinergic interneurons. Mol Brain 2021;14:130. [PMID: 34429141 DOI: 10.1186/s13041-021-00830-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Neumann WL, Sandoval KE, Mobayen S, Minaeian M, Kukielski SG, Srabony KN, Frare R, Slater O, Farr SA, Niehoff ML, Hospital A, Kontoyianni M, Crider AM, Witt KA. Synthesis and structure-activity relationships of 3,4,5-trisubstituted-1,2,4-triazoles: high affinity and selective somatostatin receptor-4 agonists for Alzheimer's disease treatment. RSC Med Chem 2021;12:1352-65. [PMID: 34458738 DOI: 10.1039/d1md00044f] [Reference Citation Analysis]
6 Gonzalez-Rodriguez M, Astillero-Lopez V, Villanueva-Anguita P, Paya-Rodriguez ME, Flores-Cuadrado A, Villar-Conde S, Ubeda-Banon I, Martinez-Marcos A, Saiz-Sanchez D. Somatostatin and Astroglial Involvement in the Human Limbic System in Alzheimer's Disease. Int J Mol Sci 2021;22:8434. [PMID: 34445147 DOI: 10.3390/ijms22168434] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Rofo F, Sandbaumhüter FA, Chourlia A, Metzendorf NG, Morrison JI, Syvänen S, Andrén PE, Jansson ET, Hultqvist G. Wide-Ranging Effects on the Brain Proteome in a Transgenic Mouse Model of Alzheimer's Disease Following Treatment with a Brain-Targeting Somatostatin Peptide. ACS Chem Neurosci 2021;12:2529-41. [PMID: 34170117 DOI: 10.1021/acschemneuro.1c00303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Pittaluga A, Roggeri A, Vallarino G, Olivero G. Somatostatin, a Presynaptic Modulator of Glutamatergic Signal in the Central Nervous System. Int J Mol Sci 2021;22:5864. [PMID: 34070785 DOI: 10.3390/ijms22115864] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
9 Nemes B, Bölcskei K, Kecskés A, Kormos V, Gaszner B, Aczél T, Hegedüs D, Pintér E, Helyes Z, Sándor Z. Human Somatostatin SST4 Receptor Transgenic Mice: Construction and Brain Expression Pattern Characterization. Int J Mol Sci 2021;22:3758. [PMID: 33916620 DOI: 10.3390/ijms22073758] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
10 Held K, Tóth BI. TRPM3 in Brain (Patho)Physiology. Front Cell Dev Biol 2021;9:635659. [PMID: 33732703 DOI: 10.3389/fcell.2021.635659] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
11 Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021;82:109947. [PMID: 33582184 DOI: 10.1016/j.cellsig.2021.109947] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
12 Zhang Y, Wu N, Li Q, Hu X, Wang L, Sun JG, Wang Z, Sun XH. Neuroprotective effect of the somatostatin receptor 5 agonist L-817,818 on retinal ganglion cells in experimental glaucoma. Exp Eye Res 2021;204:108449. [PMID: 33465395 DOI: 10.1016/j.exer.2021.108449] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Mosleh E, Ou K, Haemmerle MW, Tembo T, Yuhas A, Carboneau BA, Townsend SE, Bosma KJ, Gannon M, O'Brien RM, Stoffers DA, Golson ML. Ins1-Cre and Ins1-CreER Gene Replacement Alleles Are Susceptible To Silencing By DNA Hypermethylation. Endocrinology 2020;161:bqaa054. [PMID: 32267917 DOI: 10.1210/endocr/bqaa054] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
14 Rofo F, Ugur Yilmaz C, Metzendorf N, Gustavsson T, Beretta C, Erlandsson A, Sehlin D, Syvänen S, Nilsson P, Hultqvist G. Enhanced neprilysin-mediated degradation of hippocampal Aβ42 with a somatostatin peptide that enters the brain. Theranostics 2021;11:789-804. [PMID: 33391505 DOI: 10.7150/thno.50263] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
15 Kecskés A, Pohóczky K, Kecskés M, Varga ZV, Kormos V, Szőke É, Henn-Mike N, Fehér M, Kun J, Gyenesei A, Renner É, Palkovits M, Ferdinandy P, Ábrahám IM, Gaszner B, Helyes Z. Characterization of Neurons Expressing the Novel Analgesic Drug Target Somatostatin Receptor 4 in Mouse and Human Brains. Int J Mol Sci 2020;21:E7788. [PMID: 33096776 DOI: 10.3390/ijms21207788] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
16 Prevot TD, Sumitomo A, Tomoda T, Knutson DE, Li G, Mondal P, Banasr M, Cook JM, Sibille E. Reversal of Age-Related Neuronal Atrophy by α5-GABAA Receptor Positive Allosteric Modulation. Cereb Cortex 2021;31:1395-408. [PMID: 33068001 DOI: 10.1093/cercor/bhaa310] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Alshafie W, Francis V, Bednarz K, Pan YE, Stroh T, McPherson PS. Regulated resurfacing of a somatostatin receptor storage compartment fine-tunes pituitary secretion. J Cell Biol 2020;219:e201904054. [PMID: 31825461 DOI: 10.1083/jcb.201904054] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
18 Gomes-Porras M, Cárdenas-Salas J, Álvarez-Escolá C. Somatostatin Analogs in Clinical Practice: a Review. Int J Mol Sci 2020;21:E1682. [PMID: 32121432 DOI: 10.3390/ijms21051682] [Cited by in Crossref: 26] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
19 Liao X, Cai F, Sun Z, Zhang Y, Wang J, Jiao B, Guo J, Li J, Liu X, Guo L, Zhou Y, Wang J, Yan X, Jiang H, Xia K, Li J, Tang B, Shen L, Song W. Identification of Alzheimer's disease-associated rare coding variants in the ECE2 gene. JCI Insight 2020;5:135119. [PMID: 32102983 DOI: 10.1172/jci.insight.135119] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Wu N, Yin N, Zhang Y, Li Q, Sun X, Wang Z. Somatostatin receptor 5-mediated modulation of outward K+ currents in rat retinal ganglion cells. NeuroReport 2020;31:131-8. [DOI: 10.1097/wnr.0000000000001402] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
21 Sandoval K, Umbaugh D, House A, Crider A, Witt K. Somatostatin Receptor Subtype-4 Regulates mRNA Expression of Amyloid-Beta Degrading Enzymes and Microglia Mediators of Phagocytosis in Brains of 3xTg-AD Mice. Neurochem Res 2019;44:2670-80. [PMID: 31630317 DOI: 10.1007/s11064-019-02890-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
22 Miyata S, Kumagaya R, Kakizaki T, Fujihara K, Wakamatsu K, Yanagawa Y. Loss of Glutamate Decarboxylase 67 in Somatostatin-Expressing Neurons Leads to Anxiety-Like Behavior and Alteration in the Akt/GSK3β Signaling Pathway. Front Behav Neurosci 2019;13:131. [PMID: 31275123 DOI: 10.3389/fnbeh.2019.00131] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
23 Solarski M, Williams D, Mehrabian M, Wang H, Wille H, Schmitt-Ulms G. The human brain somatostatin interactome: SST binds selectively to P-type family ATPases. PLoS One 2019;14:e0217392. [PMID: 31136617 DOI: 10.1371/journal.pone.0217392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
24 Mikołajczyk A, Złotkowska D. Subclinical lipopolysaccharide from Salmonella Enteritidis induces neuropeptide dysregulation in the spinal cord and the dorsal root ganglia. BMC Neurosci 2019;20:18. [PMID: 31023212 DOI: 10.1186/s12868-019-0502-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
25 Nocera S, Simon A, Fiquet O, Chen Y, Gascuel J, Datiche F, Schneider N, Epelbaum J, Viollet C. Somatostatin Serves a Modulatory Role in the Mouse Olfactory Bulb: Neuroanatomical and Behavioral Evidence. Front Behav Neurosci 2019;13:61. [PMID: 31024270 DOI: 10.3389/fnbeh.2019.00061] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
26 Szentes N, Tékus V, Mohos V, Borbély É, Helyes Z. Exploratory and locomotor activity, learning and memory functions in somatostatin receptor subtype 4 gene-deficient mice in relation to aging and sex. Geroscience 2019;41:631-41. [PMID: 30903571 DOI: 10.1007/s11357-019-00059-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
27 Duron E, Vidal JS, Grousselle D, Gabelle A, Lehmann S, Pasquier F, Bombois S, Buée L, Allinquant B, Schraen-Maschke S, Baret C, Rigaud AS, Hanon O, Epelbaum J. Somatostatin and Neuropeptide Y in Cerebrospinal Fluid: Correlations With Amyloid Peptides Aβ1-42 and Tau Proteins in Elderly Patients With Mild Cognitive Impairment. Front Aging Neurosci 2018;10:297. [PMID: 30327597 DOI: 10.3389/fnagi.2018.00297] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
28 Sriroopreddy R, Sajeed R, P R, C S. Differentially expressed gene (DEG) based protein-protein interaction (PPI) network identifies a spectrum of gene interactome, transcriptome and correlated miRNA in nondisjunction Down syndrome. Int J Biol Macromol 2019;122:1080-9. [PMID: 30218739 DOI: 10.1016/j.ijbiomac.2018.09.056] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
29 Kobayashi M, Hayashi Y, Fujimoto Y, Matsuoka I. Decreased parvalbumin and somatostatin neurons in medial prefrontal cortex in BRINP1-KO mice. Neurosci Lett 2018;683:82-8. [PMID: 29960053 DOI: 10.1016/j.neulet.2018.06.050] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
30 Aguado-Llera D, Canelles S, Frago LM, Chowen JA, Argente J, Arilla E, Barrios V. The Protective Effects of IGF-I against β-Amyloid-related Downregulation of Hippocampal Somatostatinergic System Involve Activation of Akt and Protein Kinase A. Neuroscience 2018;374:104-18. [PMID: 29406271 DOI: 10.1016/j.neuroscience.2018.01.041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
31 Prévôt TD, Viollet C, Epelbaum J, Dominguez G, Béracochéa D, Guillou JL. sst2-receptor gene deletion exacerbates chronic stress-induced deficits: Consequences for emotional and cognitive ageing. Prog Neuropsychopharmacol Biol Psychiatry 2018;86:390-400. [PMID: 29409919 DOI: 10.1016/j.pnpbp.2018.01.022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
32 Lau A, Bourkas M, Lu YQQ, Ostrowski LA, Weber-Adrian D, Figueiredo C, Arshad H, Shoaei SZS, Morrone CD, Matan-Lithwick S, Abraham KJ, Wang H, Schmitt-Ulms G. Functional Amyloids and their Possible Influence on Alzheimer Disease. Discoveries (Craiova) 2017;5:e79. [PMID: 32309597 DOI: 10.15190/d.2017.9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
33 Marinelli L, Fornasari E, Di Stefano A, Turkez H, Arslan ME, Eusepi P, Ciulla M, Cacciatore I. (R)-α-Lipoyl-Gly-l-Pro-l-Glu dimethyl ester as dual acting agent for the treatment of Alzheimer's disease. Neuropeptides 2017;66:52-8. [PMID: 28993014 DOI: 10.1016/j.npep.2017.09.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
34 Pedraza-Arévalo S, Hormaechea-Agulla D, Gómez-Gómez E, Requena MJ, Selth LA, Gahete MD, Castaño JP, Luque RM. Somatostatin receptor subtype 1 as a potential diagnostic marker and therapeutic target in prostate cancer. Prostate 2017;77:1499-511. [PMID: 28905400 DOI: 10.1002/pros.23426] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
35 Cui Y, Kam K, Sherman D, Janczewski WA, Zheng Y, Feldman JL. Defining preBötzinger Complex Rhythm- and Pattern-Generating Neural Microcircuits In Vivo. Neuron 2016;91:602-14. [PMID: 27497222 DOI: 10.1016/j.neuron.2016.07.003] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 14.2] [Reference Citation Analysis]
36 Viollet C, Simon A, Tolle V, Labarthe A, Grouselle D, Loe-Mie Y, Simonneau M, Martel G, Epelbaum J. Somatostatin-IRES-Cre Mice: Between Knockout and Wild-Type? Front Endocrinol (Lausanne) 2017;8:131. [PMID: 28674519 DOI: 10.3389/fendo.2017.00131] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
37 Fee C, Banasr M, Sibille E. Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives. Biol Psychiatry. 2017;82:549-559. [PMID: 28697889 DOI: 10.1016/j.biopsych.2017.05.024] [Cited by in Crossref: 160] [Cited by in F6Publishing: 131] [Article Influence: 32.0] [Reference Citation Analysis]
38 Hu B, Cilz NI, Lei S. Somatostatin depresses the excitability of subicular bursting cells: Roles of inward rectifier K+ channels, KCNQ channels and Epac. Hippocampus 2017;27:971-84. [PMID: 28558129 DOI: 10.1002/hipo.22744] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
39 French L, Ma T, Oh H, Tseng GC, Sibille E. Age-Related Gene Expression in the Frontal Cortex Suggests Synaptic Function Changes in Specific Inhibitory Neuron Subtypes. Front Aging Neurosci 2017;9:162. [PMID: 28611654 DOI: 10.3389/fnagi.2017.00162] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
40 Scheich B, Csekő K, Borbély É, Ábrahám I, Csernus V, Gaszner B, Helyes Z. Higher susceptibility of somatostatin 4 receptor gene-deleted mice to chronic stress-induced behavioral and neuroendocrine alterations. Neuroscience 2017;346:320-36. [DOI: 10.1016/j.neuroscience.2017.01.039] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
41 Pacheco-Quinto J, Eckman CB, Eckman EA. Major amyloid-β-degrading enzymes, endothelin-converting enzyme-2 and neprilysin, are expressed by distinct populations of GABAergic interneurons in hippocampus and neocortex. Neurobiol Aging 2016;48:83-92. [PMID: 27644077 DOI: 10.1016/j.neurobiolaging.2016.08.011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
42 Lucas SJ, Armstrong DL. Protein phosphatase modulation of somatostatin receptor signaling in the mouse hippocampus. Neuropharmacology 2015;99:232-41. [PMID: 26196943 DOI: 10.1016/j.neuropharm.2015.07.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
43 Phillips WA, Clark A, Silverstein SM. On the functions, mechanisms, and malfunctions of intracortical contextual modulation. Neurosci Biobehav Rev 2015;52:1-20. [PMID: 25721105 DOI: 10.1016/j.neubiorev.2015.02.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 7.1] [Reference Citation Analysis]
44 Lin LC, Sibille E. Somatostatin, neuronal vulnerability and behavioral emotionality. Mol Psychiatry. 2015;20:377-387. [PMID: 25600109 DOI: 10.1038/mp.2014.184] [Cited by in Crossref: 116] [Cited by in F6Publishing: 99] [Article Influence: 16.6] [Reference Citation Analysis]
45 Cardoso A, Silva D, Magano S, Pereira PA, Andrade JP. Old-onset caloric restriction effects on neuropeptide Y- and somatostatin-containing neurons and on cholinergic varicosities in the rat hippocampal formation. Age (Dordr) 2014;36:9737. [PMID: 25471895 DOI: 10.1007/s11357-014-9737-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
46 Martel G, Simon A, Nocera S, Kalainathan S, Pidoux L, Blum D, Leclère-Turbant S, Diaz J, Geny D, Moyse E, Videau C, Buée L, Epelbaum J, Viollet C. Aging, but not tau pathology, impacts olfactory performances and somatostatin systems in THY-Tau22 mice. Neurobiol Aging 2015;36:1013-28. [PMID: 25433460 DOI: 10.1016/j.neurobiolaging.2014.10.033] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
47 Seney ML, Tripp A, McCune S, Lewis DA, Sibille E. Laminar and cellular analyses of reduced somatostatin gene expression in the subgenual anterior cingulate cortex in major depression. Neurobiol Dis 2015;73:213-9. [PMID: 25315685 DOI: 10.1016/j.nbd.2014.10.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 46] [Article Influence: 5.1] [Reference Citation Analysis]
48 Ouellet L, de Villers-Sidani E. Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex. Front Neuroanat 2014;8:40. [PMID: 24917792 DOI: 10.3389/fnana.2014.00040] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 4.6] [Reference Citation Analysis]
49 Borbély É, Scheich B, Helyes Z. Neuropeptides in learning and memory. Neuropeptides 2013;47:439-50. [DOI: 10.1016/j.npep.2013.10.012] [Cited by in Crossref: 90] [Cited by in F6Publishing: 92] [Article Influence: 10.0] [Reference Citation Analysis]
50 Lin LC, Sibille E. Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target? Front Pharmacol 2013;4:110. [PMID: 24058344 DOI: 10.3389/fphar.2013.00110] [Cited by in Crossref: 65] [Cited by in F6Publishing: 71] [Article Influence: 7.2] [Reference Citation Analysis]