BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gao S, Yin G, Xia Q, Wu G, Zhu J, Lu N, Yan J, Tan X. Development and Validation of a Nomogram to Predict the 180-Day Readmission Risk for Chronic Heart Failure: A Multicenter Prospective Study. Front Cardiovasc Med 2021;8:731730. [PMID: 34557533 DOI: 10.3389/fcvm.2021.731730] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Deng Y, Liu S, Wang Z, Wang Y, Jiang Y, Liu B. Explainable time-series deep learning models for the prediction of mortality, prolonged length of stay and 30-day readmission in intensive care patients. Front Med 2022;9. [DOI: 10.3389/fmed.2022.933037] [Reference Citation Analysis]
2 Liu J, Liu J, Wang J, Yan Z, Liang Q, Wang X, Wang Z, Liu M, Luan X. Prevalence and impact of malnutrition on readmission among hospitalized patients with heart failure in China. ESC Heart Fail 2022. [PMID: 36125306 DOI: 10.1002/ehf2.14152] [Reference Citation Analysis]
3 Sharma D, Prashar A. Associations between the gut microbiome, gut microbiology and heart failure: Current understanding and future directions. American Heart Journal Plus: Cardiology Research and Practice 2022;17:100150. [DOI: 10.1016/j.ahjo.2022.100150] [Reference Citation Analysis]
4 Yin T, Shi S, Zhu X, Cheang I, Lu X, Gao R, Zhang H, Yao W, Zhou Y, Li X. A Survival Prediction for Acute Heart Failure Patients via Web-Based Dynamic Nomogram with Internal Validation: A Prospective Cohort Study. JIR 2022;Volume 15:1953-67. [DOI: 10.2147/jir.s348139] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]