BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, Johnson N, Kocan KM, Mansfield KL, Nijhof AM, Papa A, Rudenko N, Villar M, Alberdi P, Torina A, Ayllón N, Vancova M, Golovchenko M, Grubhoffer L, Caracappa S, Fooks AR, Gortazar C, Rego ROM. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front Cell Infect Microbiol 2017;7:114. [PMID: 28439499 DOI: 10.3389/fcimb.2017.00114] [Cited by in Crossref: 159] [Cited by in F6Publishing: 157] [Article Influence: 31.8] [Reference Citation Analysis]
Number Citing Articles
1 Galaviz-silva L, Cuesy-león M, Molina-garza ZJ. Bacterial microbiome of Dermacentor hunteri ticks from bighorn sheep of Sonora, Mexico. International Journal of Acarology 2022;48:1-6. [DOI: 10.1080/01647954.2021.2006308] [Reference Citation Analysis]
2 Namina A, Capligina V, Seleznova M, Krumins R, Aleinikova D, Kivrane A, Akopjana S, Lazovska M, Berzina I, Ranka R. Tick-borne pathogens in ticks collected from dogs, Latvia, 2011-2016. BMC Vet Res 2019;15:398. [PMID: 31694625 DOI: 10.1186/s12917-019-2149-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
3 André MR, Neupane P, Lappin M, Herrin B, Smith V, Williams TI, Collins L, Bai H, Jorge GL, Balbuena TS, Bradley J, Maggi RG, Breitschwerdt EB. Using Proteomic Approaches to Unravel the Response of Ctenocephalides felis felis to Blood Feeding and Infection With Bartonella henselae. Front Cell Infect Microbiol 2022;12:828082. [DOI: 10.3389/fcimb.2022.828082] [Reference Citation Analysis]
4 Hromníková D, Furka D, Furka S, Santana JAD, Ravingerová T, Klöcklerová V, Žitňan D. Prevention of tick-borne diseases: challenge to recent medicine. Biologia. [DOI: 10.1007/s11756-021-00966-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
5 Bensaoud C, Hackenberg M, Kotsyfakis M. Noncoding RNAs in Parasite–Vector–Host Interactions. Trends in Parasitology 2019;35:715-24. [DOI: 10.1016/j.pt.2019.06.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
6 Contreras M, Pacheco I, Alberdi P, Díaz-Sánchez S, Artigas-Jerónimo S, Mateos-Hernández L, Villar M, Cabezas-Cruz A, de la Fuente J. Allergic Reactions and Immunity in Response to Tick Salivary Biogenic Substances and Red Meat Consumption in the Zebrafish Model. Front Cell Infect Microbiol 2020;10:78. [PMID: 32211341 DOI: 10.3389/fcimb.2020.00078] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
7 Ravi A, Ereqat S, Al-Jawabreh A, Abdeen Z, Abu Shamma O, Hall H, Pallen MJ, Nasereddin A. Metagenomic profiling of ticks: Identification of novel rickettsial genomes and detection of tick-borne canine parvovirus. PLoS Negl Trop Dis 2019;13:e0006805. [PMID: 30640905 DOI: 10.1371/journal.pntd.0006805] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
8 Jia W, Chen S, Chi S, He Y, Ren L, Wang X. Recent Progress on Tick-Borne Animal Diseases of Veterinary and Public Health Significance in China. Viruses 2022;14:355. [DOI: 10.3390/v14020355] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Alberdi P, Cabezas-Cruz A, Prados PE, Rayo MV, Artigas-Jerónimo S, de la Fuente J. The redox metabolic pathways function to limit Anaplasma phagocytophilum infection and multiplication while preserving fitness in tick vector cells. Sci Rep 2019;9:13236. [PMID: 31520000 DOI: 10.1038/s41598-019-49766-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
10 De S, Kitsou C, Sonenshine DE, Pedra JHF, Fikrig E, Kassis JA, Pal U. Epigenetic Regulation of Tick Biology and Vectorial Capacity. Trends Genet 2021;37:8-11. [PMID: 33020021 DOI: 10.1016/j.tig.2020.09.012] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Maldonado-Ruiz LP, Neupane S, Park Y, Zurek L. The bacterial community of the lone star tick (Amblyomma americanum). Parasit Vectors 2021;14:49. [PMID: 33446262 DOI: 10.1186/s13071-020-04550-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Egan SL, Taylor CL, Banks PB, Northover AS, Ahlstrom LA, Ryan UM, Irwin PJ, Oskam CL. The bacterial biome of ticks and their wildlife hosts at the urban-wildland interface. Microb Genom 2021;7. [PMID: 34913864 DOI: 10.1099/mgen.0.000730] [Reference Citation Analysis]
13 Bernard Q, Helezen E, Boulanger N. Tick-Borne Bacteria and Host Skin Interface. Skin and Arthropod Vectors. Elsevier; 2018. pp. 293-324. [DOI: 10.1016/b978-0-12-811436-0.00009-5] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
14 Cabezas-Cruz A, Hodžić A, Román-Carrasco P, Mateos-Hernández L, Duscher GG, Sinha DK, Hemmer W, Swoboda I, Estrada-Peña A, de la Fuente J. Environmental and Molecular Drivers of the α-Gal Syndrome. Front Immunol 2019;10:1210. [PMID: 31214181 DOI: 10.3389/fimmu.2019.01210] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 12.7] [Reference Citation Analysis]
15 Galluzzo P, Migliore S, Puleio R, Galuppo L, La Russa F, Blanda V, Tumino S, Torina A, Ridley A, Loria GR. Detection of Mycoplasma agalactiae in Ticks (Rhipicephalus bursa) Collected by Sheep and Goats in Sicily (South-Italy), Endemic Area for Contagious Agalactia. Microorganisms 2021;9:2312. [PMID: 34835438 DOI: 10.3390/microorganisms9112312] [Reference Citation Analysis]
16 Nyrhilä S, Sormunen JJ, Mäkelä S, Sippola E, Vesterinen EJ, Klemola T. One out of ten: low sampling efficiency of cloth dragging challenges abundance estimates of questing ticks. Exp Appl Acarol 2020;82:571-85. [PMID: 33128644 DOI: 10.1007/s10493-020-00564-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Ferreira Leal B, Sanchez Ferreira CA. Ticks and antibodies: May parasite density and tick evasion influence the outcomes following immunization protocols? Vet Parasitol 2021;300:109610. [PMID: 34735848 DOI: 10.1016/j.vetpar.2021.109610] [Reference Citation Analysis]
18 Petersen A, Rosenstierne MW, Rasmussen M, Fuursted K, Nielsen HV, O'Brien Andersen L, Bødker R, Fomsgaard A. Field samplings of Ixodes ricinus ticks from a tick-borne encephalitis virus micro-focus in Northern Zealand, Denmark. Ticks Tick Borne Dis 2019;10:1028-32. [PMID: 31151922 DOI: 10.1016/j.ttbdis.2019.05.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Sperling J, Macdonald Z, Normandeau J, Merrill E, Sperling F, Magor K. Within-population diversity of bacterial microbiomes in winter ticks (Dermacentor albipictus). Ticks and Tick-borne Diseases 2020;11:101535. [DOI: 10.1016/j.ttbdis.2020.101535] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Ellwanger JH, Chies JAB. Host immunogenetics in tick-borne encephalitis virus infection-The CCR5 crossroad. Ticks Tick Borne Dis 2019;10:729-41. [PMID: 30879988 DOI: 10.1016/j.ttbdis.2019.03.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
21 Artigas-Jerónimo S, Estrada-Peña A, Cabezas-Cruz A, Alberdi P, Villar M, de la Fuente J. Modeling Modulation of the Tick Regulome in Response to Anaplasma phagocytophilum for the Identification of New Control Targets. Front Physiol 2019;10:462. [PMID: 31057429 DOI: 10.3389/fphys.2019.00462] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
22 Sidak-Loftis LC, Rosche KL, Pence N, Ujczo JK, Hurtado J, Fisk EA, Goodman AG, Noh SM, Peters JW, Shaw DK. The Unfolded-Protein Response Triggers the Arthropod Immune Deficiency Pathway. mBio 2022;:e0070322. [PMID: 35862781 DOI: 10.1128/mbio.00703-22] [Reference Citation Analysis]
23 de Melo Junior RD, Azeredo Bastos TS, Heller LM, Couto LFM, Zapa DMB, de Assis Cavalcante AS, Cruvinel LB, Nicaretta JE, Iuasse HV, Ferreira LL, Soares VE, de Souza GRL, Cadioli FA, Lopes WDZ. How many cattle can be infected by Trypanosoma vivax by reusing the same needle and syringe, and what is the viability time of this protozoan in injectable veterinary products? Parasitology. [DOI: 10.1017/s003118202100175x] [Reference Citation Analysis]
24 Pereira de Oliveira R, Hutet E, Paboeuf F, Duhayon M, Boinas F, Perez de Leon A, Filatov S, Vial L, Le Potier MF. Comparative vector competence of the Afrotropical soft tick Ornithodoros moubata and Palearctic species, O. erraticus and O. verrucosus, for African swine fever virus strains circulating in Eurasia. PLoS One 2019;14:e0225657. [PMID: 31774871 DOI: 10.1371/journal.pone.0225657] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
25 Papa A, Tsioka K, Daskou MA, Minti F, Papadopoulou E, Melidou A, Giadinis N. Application of 16S rRNA next generation sequencing in ticks in Greece. Heliyon 2020;6:e04542. [PMID: 32760836 DOI: 10.1016/j.heliyon.2020.e04542] [Reference Citation Analysis]
26 de la Fuente J, Pacheco I, Villar M, Cabezas-Cruz A. The alpha-Gal syndrome: new insights into the tick-host conflict and cooperation. Parasit Vectors 2019;12:154. [PMID: 30944017 DOI: 10.1186/s13071-019-3413-z] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
27 Couto J, Seixas G, Stutzer C, Olivier NA, Maritz-Olivier C, Antunes S, Domingos A. Probing the Rhipicephalusbursa Sialomes in Potential Anti-Tick Vaccine Candidates: A Reverse Vaccinology Approach. Biomedicines 2021;9:363. [PMID: 33807386 DOI: 10.3390/biomedicines9040363] [Reference Citation Analysis]
28 Ali A, Khan MA, Zahid H, Yaseen PM, Qayash Khan M, Nawab J, Ur Rehman Z, Ateeq M, Khan S, Ibrahim M. Seasonal Dynamics, Record of Ticks Infesting Humans, Wild and Domestic Animals and Molecular Phylogeny of Rhipicephalus microplus in Khyber Pakhtunkhwa Pakistan. Front Physiol 2019;10:793. [PMID: 31379587 DOI: 10.3389/fphys.2019.00793] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
29 Urbanová V, Kalinová E, Kopáček P, Šíma R. Experimental Infection of Mice and Ticks with the Human Isolate of Anaplasma phagocytophilum NY-18. Pathogens 2022;11:820. [DOI: 10.3390/pathogens11070820] [Reference Citation Analysis]
30 Vargová B, Majláth I, Kurimský J, Cimbala R, Kosterec M, Tryjanowski P, Jankowiak Ł, Raši T, Majláthová V. Electromagnetic radiation and behavioural response of ticks: an experimental test. Exp Appl Acarol 2018;75:85-95. [DOI: 10.1007/s10493-018-0253-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Xu Z, Yan Y, Zhang H, Cao J, Zhou Y, Xu Q, Zhou J. A serpin from the tick Rhipicephalus haemaphysaloides: Involvement in vitellogenesis. Vet Parasitol 2020;279:109064. [PMID: 32143012 DOI: 10.1016/j.vetpar.2020.109064] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
32 Benelli G. Pathogens Manipulating Tick Behavior-Through a Glass, Darkly. Pathogens 2020;9:E664. [PMID: 32824571 DOI: 10.3390/pathogens9080664] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
33 Talactac MR, Hernandez EP, Fujisaki K, Tanaka T. A Continuing Exploration of Tick-Virus Interactions Using Various Experimental Viral Infections of Hard Ticks. Front Physiol 2018;9:1728. [PMID: 30564140 DOI: 10.3389/fphys.2018.01728] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
34 Luzzi MC, Carvalho LAL, Pinheiro DG, Lima-Duarte L, Camargo JV, Kishi LT, Fernandes CC, Machado RZ, Soares JF, André MR, Barros-Battesti DM. Analysis on the prokaryotic microbiome in females and embryonic cell cultures of Rhipicephalus sanguineus tropical and temperate lineages from two specific localities in Brazil. Rev Bras Parasitol Vet 2021;30:e005721. [PMID: 34378769 DOI: 10.1590/S1984-29612021066] [Reference Citation Analysis]
35 Couper LI, Kwan JY, Ma J, Swei A. Drivers and patterns of microbial community assembly in a Lyme disease vector. Ecol Evol 2019;9:7768-79. [PMID: 31346439 DOI: 10.1002/ece3.5361] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
36 Cabezas-Cruz A, Vayssier-Taussat M, Greub G. Tick-borne pathogen detection: what's new? Microbes Infect 2018;20:441-4. [PMID: 29329935 DOI: 10.1016/j.micinf.2017.12.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
37 Sahara A, Nugraheni YR, Patra G, Prastowo J, Priyowidodo D. Ticks (Acari: Ixodidae) infestation on cattle in various regions in Indonesia. Vet World 2019;12:1755-9. [PMID: 32009753 DOI: 10.14202/vetworld.2019.1755-1759] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
38 Kitsou C, Fikrig E, Pal U. Tick host immunity: vector immunomodulation and acquired tick resistance. Trends Immunol 2021;42:554-74. [PMID: 34074602 DOI: 10.1016/j.it.2021.05.005] [Reference Citation Analysis]
39 Contreras M, Karlsen M, Villar M, Olsen RH, Leknes LM, Furevik A, Yttredal KL, Tartor H, Grove S, Alberdi P, Brudeseth B, de la Fuente J. Vaccination with Ectoparasite Proteins Involved in Midgut Function and Blood Digestion Reduces Salmon Louse Infestations. Vaccines (Basel) 2020;8:E32. [PMID: 31963779 DOI: 10.3390/vaccines8010032] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
40 Cabezas-cruz A, Pollet T, Estrada-peña A, Allain E, I. Bonnet S, Moutailler S. Handling the Microbial Complexity Associated to Ticks. In: Abubakar M, K. Perera P, editors. Ticks and Tick-Borne Pathogens. IntechOpen; 2019. [DOI: 10.5772/intechopen.80511] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Gondard M, Cabezas-Cruz A, Charles RA, Vayssier-Taussat M, Albina E, Moutailler S. Ticks and Tick-Borne Pathogens of the Caribbean: Current Understanding and Future Directions for More Comprehensive Surveillance. Front Cell Infect Microbiol 2017;7:490. [PMID: 29238699 DOI: 10.3389/fcimb.2017.00490] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 5.6] [Reference Citation Analysis]
42 Salim B, Alanazi AD, Omori R, Alyousif MS, Alanazi IO, Katakura K, Nakao R. Potential role of dogs as sentinels and reservoirs for piroplasms infecting equine and cattle in Riyadh City, Saudi Arabia. Acta Trop 2019;193:78-83. [PMID: 30831114 DOI: 10.1016/j.actatropica.2019.02.029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
43 Mateos-Hernández L, Pipová N, Allain E, Henry C, Rouxel C, Lagrée AC, Haddad N, Boulouis HJ, Valdés JJ, Alberdi P, de la Fuente J, Cabezas-Cruz A, Šimo L. Enlisting the Ixodes scapularis Embryonic ISE6 Cell Line to Investigate the Neuronal Basis of Tick-Pathogen Interactions. Pathogens 2021;10:70. [PMID: 33466622 DOI: 10.3390/pathogens10010070] [Reference Citation Analysis]
44 Eisen L. Vector competence studies with hard ticks and Borrelia burgdorferi sensu lato spirochetes: A review. Ticks Tick Borne Dis 2020;11:101359. [PMID: 32067949 DOI: 10.1016/j.ttbdis.2019.101359] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
45 Rocha JM, de Oliveira PB, Martins TF, Faccini JLH, P Sevá A, Luz HR, Albuquerque GR. Diversity of ticks and detection of Rickettsia amblyommatis infecting ticks on wild birds in anthropogenic landscapes in Bahia state, northeast Brazil. Exp Appl Acarol 2021;84:227-39. [PMID: 33891225 DOI: 10.1007/s10493-021-00616-4] [Reference Citation Analysis]
46 Xu Z, Lin Z, Wei N, Di Q, Cao J, Zhou Y, Gong H, Zhang H, Zhou J. Immunomodulatory effects of Rhipicephalus haemaphysaloides serpin RHS2 on host immune responses. Parasit Vectors 2019;12:341. [PMID: 31296257 DOI: 10.1186/s13071-019-3607-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
47 Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, Valdés JJ, Estrada-Peña A, Alberdi P, de la Fuente J. Functional Evolution of Subolesin/Akirin. Front Physiol 2018;9:1612. [PMID: 30542290 DOI: 10.3389/fphys.2018.01612] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
48 De La Fuente J, Villar M, Estrada-peña A, Olivas JA. High throughput discovery and characterization of tick and pathogen vaccine protective antigens using vaccinomics with intelligent Big Data analytic techniques. Expert Review of Vaccines 2018;17:569-76. [DOI: 10.1080/14760584.2018.1493928] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
49 Duncan KT, Elshahed MS, Sundstrom KD, Little SE, Youssef NH. Influence of tick sex and geographic region on the microbiome of Dermacentor variabilis collected from dogs and cats across the United States. Ticks Tick Borne Dis 2022;13:102002. [PMID: 35810549 DOI: 10.1016/j.ttbdis.2022.102002] [Reference Citation Analysis]
50 Rodríguez Mallón A, Javier González L, Encinosa Guzmán PE, Bechara GH, Sanches GS, Pousa S, Cabrera G, Cabrales A, Garay H, Mejías R, López Álvarez JR, Bello Soto Y, Almeida F, Guirola O, Rodríguez Fernández R, Fuentes Castillo A, Méndez L, Jiménez S, Licea-Navarro A, Portela M, Durán R, Estrada MP. Functional and Mass Spectrometric Evaluation of an Anti-Tick Antigen Based on the P0 Peptide Conjugated to Bm86 Protein. Pathogens 2020;9:E513. [PMID: 32630414 DOI: 10.3390/pathogens9060513] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
51 Sorvillo TE, Rodriguez SE, Hudson P, Carey M, Rodriguez LL, Spiropoulou CF, Bird BH, Spengler JR, Bente DA. Towards a Sustainable One Health Approach to Crimean-Congo Hemorrhagic Fever Prevention: Focus Areas and Gaps in Knowledge. Trop Med Infect Dis 2020;5:E113. [PMID: 32645889 DOI: 10.3390/tropicalmed5030113] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
52 Wechtaisong W, Bonnet SI, Chomel BB, Lien YY, Chuang ST, Tsai YL. Investigation of Transovarial Transmission of Bartonella henselae in Rhipicephalus sanguineus sensu lato Ticks Using Artificial Feeding. Microorganisms 2021;9:2501. [PMID: 34946103 DOI: 10.3390/microorganisms9122501] [Reference Citation Analysis]
53 Artigas-Jerónimo S, Alberdi P, Villar Rayo M, Cabezas-Cruz A, Prados PJE, Mateos-Hernández L, de la Fuente J. Anaplasma phagocytophilum modifies tick cell microRNA expression and upregulates isc-mir-79 to facilitate infection by targeting the Roundabout protein 2 pathway. Sci Rep 2019;9:9073. [PMID: 31235752 DOI: 10.1038/s41598-019-45658-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
54 Faghihi F, Telmadarraiy Z, Chinikar S, Nowotny N, Fooks AR, Shahhosseini N. Spatial and Phylodynamic Survey on Crimean-Congo Hemorrhagic Fever Virus Strains in Northeast of Iran. Jundishapur J Microbiol 2018;11. [DOI: 10.5812/jjm.59412] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
55 Cabezas-Cruz A, Estrada-Peña A, de la Fuente J. The Good, the Bad and the Tick. Front Cell Dev Biol 2019;7:79. [PMID: 31157221 DOI: 10.3389/fcell.2019.00079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
56 Paulino P, Vitari G, Rezende A, Couto J, Antunes S, Domingos A, Peckle M, Massard C, Araújo F, Santos H. Characterization of the Rhipicephalus (Boophilus) microplus Sialotranscriptome Profile in Response to Theileria equi Infection. Pathogens 2021;10:167. [PMID: 33557100 DOI: 10.3390/pathogens10020167] [Reference Citation Analysis]
57 Capligina V, Seleznova M, Akopjana S, Freimane L, Lazovska M, Krumins R, Kivrane A, Namina A, Aleinikova D, Kimsis J, Kazarina A, Igumnova V, Bormane A, Ranka R. Large-scale countrywide screening for tick-borne pathogens in field-collected ticks in Latvia during 2017-2019. Parasit Vectors 2020;13:351. [PMID: 32665019 DOI: 10.1186/s13071-020-04219-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
58 Rooman M, Assad Y, Tabassum S, Sultan S, Ayaz S, Khan MF, Khan SN, Ali R. A cross-sectional survey of hard ticks and molecular characterization of Rhipicephalus microplus parasitizing domestic animals of Khyber Pakhtunkhwa, Pakistan. PLoS One 2021;16:e0255138. [PMID: 34351948 DOI: 10.1371/journal.pone.0255138] [Reference Citation Analysis]
59 Gondard M, Temmam S, Devillers E, Pinarello V, Bigot T, Chrétien D, Aprelon R, Vayssier-Taussat M, Albina E, Eloit M, Moutailler S. RNA Viruses of Amblyomma variegatum and Rhipicephalus microplus and Cattle Susceptibility in the French Antilles. Viruses 2020;12:E144. [PMID: 31991915 DOI: 10.3390/v12020144] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
60 Chandra S, Smith K, Alanazi AD, Alyousif MS, Emery D, Slapeta J. Rhipicephalus sanguineus sensu lato from dogs and dromedary camels in Riyadh, Saudi Arabia: low prevalence of vector-borne pathogens in dogs detected using multiplexed tandem PCR panel. Folia Parasitol (Praha) 2019;66:2019. [PMID: 31332102 DOI: 10.14411/fp.2019.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
61 Migné CV, Hönig V, Bonnet SI, Palus M, Rakotobe S, Galon C, Heckmann A, Vyletova E, Devillers E, Attoui H, Ruzek D, Moutailler S. Evaluation of two artificial infection methods of live ticks as tools for studying interactions between tick-borne viruses and their tick vectors. Sci Rep 2022;12:491. [PMID: 35017574 DOI: 10.1038/s41598-021-04498-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
62 Carbaugh DL, Lazear HM. Flavivirus Envelope Protein Glycosylation: Impacts on Viral Infection and Pathogenesis. J Virol 2020;94:e00104-20. [PMID: 32161171 DOI: 10.1128/JVI.00104-20] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
63 Vila A, Estrada-Peña A, Altet L, Cusco A, Dandreano S, Francino O, Halos L, Roura X. Endosymbionts carried by ticks feeding on dogs in Spain. Ticks Tick Borne Dis 2019;10:848-52. [PMID: 31006611 DOI: 10.1016/j.ttbdis.2019.04.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
64 Chigwada AD, Mapholi NO, Ogola HJO, Mbizeni S, Masebe TM. Pathogenic and Endosymbiotic Bacteria and Their Associated Antibiotic Resistance Biomarkers in Amblyomma and Hyalomma Ticks Infesting Nguni Cattle (Bos spp.). Pathogens 2022;11:432. [DOI: 10.3390/pathogens11040432] [Reference Citation Analysis]
65 Panetta JL, Šíma R, Calvani NED, Hajdušek O, Chandra S, Panuccio J, Šlapeta J. Reptile-associated Borrelia species in the goanna tick (Bothriocroton undatum) from Sydney, Australia. Parasit Vectors 2017;10:616. [PMID: 29262840 DOI: 10.1186/s13071-017-2579-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
66 van Oosterwijk JG, Wikel SK. Resistance to Ticks and the Path to Anti-Tick and Transmission Blocking Vaccines. Vaccines (Basel) 2021;9:725. [PMID: 34358142 DOI: 10.3390/vaccines9070725] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
67 Antunes S, Couto J, Ferrolho J, Rodrigues F, Nobre J, Santos AS, Santos-Silva MM, de la Fuente J, Domingos A. Rhipicephalus bursa Sialotranscriptomic Response to Blood Feeding and Babesia ovis Infection: Identification of Candidate Protective Antigens. Front Cell Infect Microbiol 2018;8:116. [PMID: 29780749 DOI: 10.3389/fcimb.2018.00116] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
68 Aguilar-Díaz H, Quiroz-Castañeda RE, Cobaxin-Cárdenas M, Salinas-Estrella E, Amaro-Estrada I. Advances in the Study of the Tick Cattle Microbiota and the Influence on Vectorial Capacity. Front Vet Sci 2021;8:710352. [PMID: 34485437 DOI: 10.3389/fvets.2021.710352] [Reference Citation Analysis]
69 Blisnick AA, Šimo L, Grillon C, Fasani F, Brûlé S, Le Bonniec B, Prina E, Marsot M, Relmy A, Blaise-Boisseau S, Richardson J, Bonnet SI. The Immunomodulatory Effect of IrSPI, a Tick Salivary Gland Serine Protease Inhibitor Involved in Ixodes ricinus Tick Feeding. Vaccines (Basel) 2019;7:E148. [PMID: 31614804 DOI: 10.3390/vaccines7040148] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
70 Boulanger N, Wikel S. Induced Transient Immune Tolerance in Ticks and Vertebrate Host: A Keystone of Tick-Borne Diseases? Front Immunol 2021;12:625993. [PMID: 33643313 DOI: 10.3389/fimmu.2021.625993] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
71 Bang MS, Kim CM, Pyun SH, Kim DM, Yun NR. Molecular investigation of tick-borne pathogens in ticks removed from tick-bitten humans in the southwestern region of the Republic of Korea. PLoS One 2021;16:e0252992. [PMID: 34129613 DOI: 10.1371/journal.pone.0252992] [Reference Citation Analysis]
72 Rosche KL, Sidak-Loftis LC, Hurtado J, Fisk EA, Shaw DK. Arthropods Under Pressure: Stress Responses and Immunity at the Pathogen-Vector Interface. Front Immunol 2020;11:629777. [PMID: 33659000 DOI: 10.3389/fimmu.2020.629777] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
73 Couto J, Tonk M, Ferrolho J, Antunes S, Vilcinskas A, de la Fuente J, Domingos A, Cabezas-Cruz A. Antiplasmodial activity of tick defensins in a mouse model of malaria. Ticks Tick Borne Dis 2018;9:844-9. [PMID: 29567145 DOI: 10.1016/j.ttbdis.2018.03.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
74 Gopal J, Ramamoorthy T, Kasinathan G, Narendran PK, Purushothaman J, Yellapu NK. VectorInfo: A web resource for medically important Indian arthropod disease vectors. Acta Trop 2020;211:105601. [PMID: 32598921 DOI: 10.1016/j.actatropica.2020.105601] [Reference Citation Analysis]
75 Pereira De Oliveira R, Hutet E, Lancelot R, Paboeuf F, Duhayon M, Boinas F, Pérez de León AA, Filatov S, Le Potier MF, Vial L. Differential vector competence of Ornithodoros soft ticks for African swine fever virus: What if it involves more than just crossing organic barriers in ticks? Parasit Vectors 2020;13:618. [PMID: 33298119 DOI: 10.1186/s13071-020-04497-1] [Reference Citation Analysis]
76 Barradas PF, Lima C, Cardoso L, Amorim I, Gärtner F, Mesquita JR. Molecular Evidence of Hemolivia mauritanica, Ehrlichia spp. and the Endosymbiont Candidatus Midichloria Mitochondrii in Hyalomma aegyptium Infesting Testudo graeca Tortoises from Doha, Qatar. Animals (Basel) 2020;11:E30. [PMID: 33375268 DOI: 10.3390/ani11010030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
77 Zhang YK, Yu ZJ, Wang D, Bronislava V, Branislav P, Liu JZ. The bacterial microbiome of field-collected Dermacentor marginatus and Dermacentor reticulatus from Slovakia. Parasit Vectors 2019;12:325. [PMID: 31248443 DOI: 10.1186/s13071-019-3582-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
78 Bonnet SI, Nadal C. Experimental Infection of Ticks: An Essential Tool for the Analysis of Babesia Species Biology and Transmission. Pathogens 2021;10:1403. [PMID: 34832559 DOI: 10.3390/pathogens10111403] [Reference Citation Analysis]
79 Zhang R, Zhang Q, Yu G, Zhang Z. Metagenomic deep sequencing obtains taxonomic and functional profiles of Haemaphysalis longicornis that vary in response to different developmental stages and sexes. Exp Appl Acarol 2021;83:285-300. [PMID: 33386513 DOI: 10.1007/s10493-020-00582-3] [Reference Citation Analysis]
80 Narasimhan S, Booth CJ, DePonte K, Wu MJ, Liang X, Mohanty S, Kantor F, Fikrig E. Host-specific expression of Ixodes scapularis salivary genes. Ticks Tick Borne Dis 2019;10:386-97. [PMID: 30545615 DOI: 10.1016/j.ttbdis.2018.12.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
81 Tufa TB, Wölfel S, Zubriková D, Víchová B, Andersson M, Rieß R, Rutaihwa L, Fuchs A, Orth HM, Häussinger D, Feldt T, Poppert S, Dobler G, Bakkes DK, Chitimia-Dobler L. Tick species from cattle in the Adama Region of Ethiopia and pathogens detected. Exp Appl Acarol 2021;84:459-71. [PMID: 33909190 DOI: 10.1007/s10493-021-00623-5] [Reference Citation Analysis]
82 Bonnet SI, Blisnick T, Al Khoury C, Guillot J. Of fungi and ticks: Morphological and molecular characterization of fungal contaminants of a laboratory-reared Ixodes ricinus colony. Ticks Tick Borne Dis 2021;12:101732. [PMID: 33992909 DOI: 10.1016/j.ttbdis.2021.101732] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Selim A, Alanazi AD, Sazmand A, Otranto D. Seroprevalence and associated risk factors for vector-borne pathogens in dogs from Egypt. Parasit Vectors 2021;14:175. [PMID: 33752744 DOI: 10.1186/s13071-021-04670-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Shah SZ, Jabbar B, Ahmed N, Rehman A, Nasir H, Nadeem S, Jabbar I, Rahman ZU, Azam S. Epidemiology, Pathogenesis, and Control of a Tick-Borne Disease- Kyasanur Forest Disease: Current Status and Future Directions. Front Cell Infect Microbiol 2018;8:149. [PMID: 29868505 DOI: 10.3389/fcimb.2018.00149] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
85 Abreu DPB, Peixoto MP, Luz HR, Zeringóta V, Santolin ÍDAC, Famadas KM, Faccini JLH, McIntosh D. Two for the price of one: Co-infection with Rickettsia bellii and spotted fever group Rickettsia in Amblyomma (Acari: Ixodidae) ticks recovered from wild birds in Brazil. Ticks Tick Borne Dis 2019;10:101266. [PMID: 31402227 DOI: 10.1016/j.ttbdis.2019.101266] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
86 Bhowmick B, Han Q. Understanding Tick Biology and Its Implications in Anti-tick and Transmission Blocking Vaccines Against Tick-Borne Pathogens. Front Vet Sci 2020;7:319. [PMID: 32582785 DOI: 10.3389/fvets.2020.00319] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
87 O'Neal AJ, Singh N, Mendes MT, Pedra JHF. The genus Anaplasma: drawing back the curtain on tick-pathogen interactions. Pathog Dis 2021;79:ftab022. [PMID: 33792663 DOI: 10.1093/femspd/ftab022] [Reference Citation Analysis]
88 Laukaitis HJ, Macaluso KR. Unpacking the intricacies of Rickettsia-vector interactions. Trends Parasitol 2021;37:734-46. [PMID: 34162522 DOI: 10.1016/j.pt.2021.05.008] [Reference Citation Analysis]
89 Hussain S, Perveen N, Hussain A, Song B, Aziz MU, Zeb J, Li J, George D, Cabezas-cruz A, Sparagano O. The Symbiotic Continuum Within Ticks: Opportunities for Disease Control. Front Microbiol 2022;13:854803. [DOI: 10.3389/fmicb.2022.854803] [Reference Citation Analysis]
90 Alvarez DO, Corona-González B, Rodríguez-Mallón A, Rodríguez Gonzalez I, Alfonso P, Noda Ramos AA, Díaz-Sánchez AA, González Navarrete M, Rodríguez Fernández R, Méndez Mellor L, Catanese HN, Peláez M, Gainza YA, Marrero-Perera R, Roblejo-Arias L, Lobo-Rivero E, Silva CB, Fonseca AH, López ER, Cabezas-Cruz A. Ticks and Tick-Borne Diseases in Cuba, Half a Century of Scientific Research. Pathogens 2020;9:E616. [PMID: 32731487 DOI: 10.3390/pathogens9080616] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
91 Zheng W, Umemiya-Shirafuji R, Chen S, Okado K, Adjou Moumouni PF, Suzuki H, Yang S, Liu M, Xuan X. Identification of Haemaphysalis longicornis Genes Differentially Expressed in Response to Babesia microti Infection. Pathogens 2020;9:E378. [PMID: 32423088 DOI: 10.3390/pathogens9050378] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Yao J, Xu Z, Sun Z, Zhou K, Lu J, Mi R, Huang Y, Han X, Ren K, Chen Z, Gong H. Response of Leucine-Rich Repeat Domain-Containing Protein in Haemaphysalis longicornis to Babesia microti Infection and Its Ligand Identification. Infect Immun 2021;89:e00268-20. [PMID: 33593890 DOI: 10.1128/IAI.00268-20] [Reference Citation Analysis]
93 Margos G, Fingerle V, Reynolds S. Borrelia bavariensis: Vector Switch, Niche Invasion, and Geographical Spread of a Tick-Borne Bacterial Parasite. Front Ecol Evol 2019;7:401. [DOI: 10.3389/fevo.2019.00401] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
94 Boeuf A, Schnell G, Bernard Q, Kern A, Westermann B, Ehret-Sabatier L, Grillon A, Schramm F, Jaulhac B, Boulanger N. Dissociating effect of salivary gland extract from Ixodes ricinus on human fibroblasts: Potential impact on Borrelia transmission. Ticks Tick Borne Dis 2019;10:433-41. [PMID: 30595500 DOI: 10.1016/j.ttbdis.2018.12.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
95 Couper LI, Yang Y, Yang XF, Swei A. Comparative vector competence of North American Lyme disease vectors. Parasit Vectors 2020;13:29. [PMID: 31937369 DOI: 10.1186/s13071-020-3893-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
96 Khanal S, Taank V, Anderson JF, Sultana H, Neelakanta G. Arthropod transcriptional activator protein-1 (AP-1) aids tick-rickettsial pathogen survival in the cold. Sci Rep 2018;8:11409. [PMID: 30061607 DOI: 10.1038/s41598-018-29654-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
97 Wikel SK. Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions. Vet Sci 2018;5:E60. [PMID: 29925800 DOI: 10.3390/vetsci5020060] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 10.3] [Reference Citation Analysis]
98 Leannec-Rialland V, Cabezas-Cruz A, Atanasova V, Chereau S, Ponts N, Tonk M, Vilcinskas A, Ferrer N, Valdés JJ, Richard-Forget F. Tick defensin γ-core reduces Fusarium graminearum growth and abrogates mycotoxins production with high efficiency. Sci Rep 2021;11:7962. [PMID: 33846413 DOI: 10.1038/s41598-021-86904-w] [Reference Citation Analysis]
99 Contreras M, Alberdi P, Mateos-Hernández L, Fernández de Mera IG, García-Pérez AL, Vancová M, Villar M, Ayllón N, Cabezas-Cruz A, Valdés JJ, Stuen S, Gortazar C, de la Fuente J. Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection. Front Cell Infect Microbiol 2017;7:307. [PMID: 28725639 DOI: 10.3389/fcimb.2017.00307] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
100 Estrada-Peña A, Cabezas-Cruz A, Obregón D. Resistance of Tick Gut Microbiome to Anti-Tick Vaccines, Pathogen Infection and Antimicrobial Peptides. Pathogens 2020;9:E309. [PMID: 32331444 DOI: 10.3390/pathogens9040309] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
101 Blazhev A, Atanasova M, Kostov K, Doychinova T, Blazheva S, Karcheva M. Estimation of Ixodes ricinus (Acari: Ixodidae) Populations of Kaylaka Park in the Town of Pleven, Bulgaria. Insects 2021;12:808. [PMID: 34564248 DOI: 10.3390/insects12090808] [Reference Citation Analysis]
102 Estrada-Peña A, de la Fuente J, Cabezas-Cruz A. Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens. Front Cell Infect Microbiol 2017;7:234. [PMID: 28620590 DOI: 10.3389/fcimb.2017.00234] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
103 Grabowski JM, Offerdahl DK, Bloom ME. The Use of Ex Vivo Organ Cultures in Tick-Borne Virus Research. ACS Infect Dis 2018;4:247-56. [PMID: 29473735 DOI: 10.1021/acsinfecdis.7b00274] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
104 Brinkerhoff RJ, Clark C, Ocasio K, Gauthier DT, Hynes WL. Factors affecting the microbiome of Ixodes scapularis and Amblyomma americanum. PLoS One 2020;15:e0232398. [PMID: 32413031 DOI: 10.1371/journal.pone.0232398] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
105 Wang M, Zhu D, Dai J, Zhong Z, Zhang Y, Wang J. Tissue Localization and Variation of Major Symbionts in Haemaphysalis longicornis, Rhipicephalus haemaphysaloides, and Dermacentor silvarum in China. Appl Environ Microbiol 2018;84:e00029-18. [PMID: 29523550 DOI: 10.1128/AEM.00029-18] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
106 Travanty NV, Ponnusamy L, Kakumanu ML, Nicholson WL, Apperson CS. Diversity and structure of the bacterial microbiome of the American dog tick, Dermacentor variabilis, is dominated by the endosymbiont Francisella. Symbiosis 2019;79:239-50. [DOI: 10.1007/s13199-019-00642-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
107 Papa A, Tsergouli K, Tsioka K, Mirazimi A. Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions. Front Cell Infect Microbiol 2017;7:213. [PMID: 28603698 DOI: 10.3389/fcimb.2017.00213] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 6.4] [Reference Citation Analysis]
108 Couto J, Villar M, Mateos-Hernández L, Ferrolho J, Sanches GS, Sofia Santos A, Santos-Silva MM, Nobre J, Moreira O, Antunes S, de la Fuente J, Domingos A. Quantitative Proteomics Identifies Metabolic Pathways Affected by Babesia Infection and Blood Feeding in the Sialoproteome of the Vector Rhipicephalus bursa. Vaccines (Basel) 2020;8:E91. [PMID: 32092882 DOI: 10.3390/vaccines8010091] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
109 de Mello VVC, de Souza Ramos IA, Herrera HM, Mendes NS, Calchi AC, Campos JBV, Macedo GC, Alves JVA, Machado RZ, André MR. Occurrence and genetic diversity of hemoplasmas in beef cattle from the Brazilian Pantanal, an endemic area for bovine trypanosomiasis in South America. Comp Immunol Microbiol Infect Dis 2019;66:101337. [PMID: 31437678 DOI: 10.1016/j.cimid.2019.101337] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
110 McClure Carroll EE, Wang X, Shaw DK, O'Neal AJ, Oliva Chávez AS, Brown LJ, Boradia VM, Hammond HL, Pedra JHF. p47 licenses activation of the immune deficiency pathway in the tick Ixodes scapularis. Proc Natl Acad Sci U S A 2019;116:205-10. [PMID: 30559180 DOI: 10.1073/pnas.1808905116] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
111 Flores-Ramirez G, Sallay B, Danchenko M, Lakhneko O, Špitalská E, Skultety L. Comparative proteomics of the vector Dermacentor reticulatus revealed differentially regulated proteins associated with pathogen transmission in response to laboratory infection with Rickettsia slovaca. Parasit Vectors 2019;12:318. [PMID: 31234913 DOI: 10.1186/s13071-019-3564-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
112 Wu J, Zhou X, Chen Q, Chen Z, Zhang J, Yang L, Sun Y, Wang G, Dai J, Feng T. Defensins as a promising class of tick antimicrobial peptides: a scoping review. Infect Dis Poverty 2022;11:71. [PMID: 35725522 DOI: 10.1186/s40249-022-00996-8] [Reference Citation Analysis]
113 Cabezas-Cruz A, Espinosa P, Alberdi P, de la Fuente J. Tick-Pathogen Interactions: The Metabolic Perspective. Trends Parasitol 2019;35:316-28. [PMID: 30711437 DOI: 10.1016/j.pt.2019.01.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
114 Contreras M, Villar M, Artigas-Jerónimo S, Kornieieva L, Mуtrofanov S, de la Fuente J. A reverse vaccinology approach to the identification and characterization of Ctenocephalides felis candidate protective antigens for the control of cat flea infestations. Parasit Vectors 2018;11:43. [PMID: 29347954 DOI: 10.1186/s13071-018-2618-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
115 de la Fuente J, Contreras M, Estrada-peña A, Cabezas-cruz A. Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. Vaccine 2017;35:5089-94. [DOI: 10.1016/j.vaccine.2017.07.097] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 7.4] [Reference Citation Analysis]
116 Landesman WJ, Mulder K, Fredericks LP, Allan BF. Cross-kingdom analysis of nymphal-stage Ixodes scapularis microbial communities in relation to Borrelia burgdorferi infection and load. FEMS Microbiol Ecol 2019;95:fiz167. [PMID: 31722384 DOI: 10.1093/femsec/fiz167] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
117 Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B, Hajdusek O, Tomás-Cortázar J, Azagi T, Strnad M, Knorr S, Sima R, Jalovecka M, Fumačová Havlíková S, Ličková M, Sláviková M, Kopacek P, Grubhoffer L, Hovius JW. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 2019;12:229. [PMID: 31088506 DOI: 10.1186/s13071-019-3468-x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 11.0] [Reference Citation Analysis]
118 Vimonish R, Dinkel KD, Fry LM, Johnson WC, Capelli-peixoto J, Bastos RG, Scoles GA, Knowles DP, Madder M, Chaka G, Ueti MW. Isolation of infectious Theileria parva sporozoites secreted by infected Rhipicephalus appendiculatus ticks into an in vitro tick feeding system. Parasites Vectors 2021;14. [DOI: 10.1186/s13071-021-05120-7] [Reference Citation Analysis]
119 Boucheikhchoukh M, Laroche M, Aouadi A, Dib L, Benakhla A, Raoult D, Parola P. MALDI-TOF MS identification of ticks of domestic and wild animals in Algeria and molecular detection of associated microorganisms. Comp Immunol Microbiol Infect Dis 2018;57:39-49. [PMID: 30017077 DOI: 10.1016/j.cimid.2018.05.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
120 Banović P, Díaz-Sánchez AA, Galon C, Simin V, Mijatović D, Obregón D, Moutailler S, Cabezas-Cruz A. Humans infested with Ixodes ricinus are exposed to a diverse array of tick-borne pathogens in Serbia. Ticks Tick Borne Dis 2021;12:101609. [PMID: 33260091 DOI: 10.1016/j.ttbdis.2020.101609] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
121 Rodriguez SE, McAuley AJ, Gargili A, Bente DA. Interactions of Human Dermal Dendritic Cells and Langerhans Cells Treated with Hyalomma Tick Saliva with Crimean-Congo Hemorrhagic Fever Virus. Viruses 2018;10:E381. [PMID: 30036960 DOI: 10.3390/v10070381] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
122 Hernández-jarguín A, Díaz-sánchez S, Villar M, de la Fuente J. Integrated metatranscriptomics and metaproteomics for the characterization of bacterial microbiota in unfed Ixodes ricinus. Ticks and Tick-borne Diseases 2018;9:1241-51. [DOI: 10.1016/j.ttbdis.2018.04.020] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
123 Díaz-Sánchez S, Hernández-Jarguín A, Torina A, de Mera IGF, Blanda V, Caracappa S, Gortazar C, de la Fuente J. Characterization of the bacterial microbiota in wild-caught Ixodes ventalloi. Ticks Tick Borne Dis 2019;10:336-43. [PMID: 30482513 DOI: 10.1016/j.ttbdis.2018.11.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
124 López González CA, Hernández-Camacho N, Aguilar-Tipacamú G, Zamora-Ledesma S, Olvera-Ramírez AM, Jones RW. Gap Analysis of the Habitat Interface of Ticks and Wildlife in Mexico. Pathogens 2021;10:1541. [PMID: 34959496 DOI: 10.3390/pathogens10121541] [Reference Citation Analysis]
125 Cayol C, Giermek A, Gomez-Chamorro A, Hytönen J, Kallio ER, Mappes T, Salo J, Voordouw MJ, Koskela E. Borrelia afzelii alters reproductive success in a rodent host. Proc Biol Sci 2018;285:20181056. [PMID: 30068677 DOI: 10.1098/rspb.2018.1056] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
126 Moustafa MAM, Mohamed WMA, Lau AC, Chatanga E, Qiu Y, Hayashi N, Naguib D, Sato K, Takano A, Mastuno K, Nonaka N, Taylor D, Kawabata H, Nakao R. Novel symbionts and potential human pathogens excavated from argasid tick microbiomes that are shaped by dual or single symbiosis. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.04.020] [Reference Citation Analysis]
127 de la Fuente J. Controlling ticks and tick-borne diseases…looking forward. Ticks Tick Borne Dis 2018;9:1354-7. [PMID: 29656834 DOI: 10.1016/j.ttbdis.2018.04.001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 9.8] [Reference Citation Analysis]
128 Egan SL, Loh SM, Banks PB, Gillett A, Ahlstrom L, Ryan UM, Irwin PJ, Oskam CL. Bacterial community profiling highlights complex diversity and novel organisms in wildlife ticks. Ticks Tick Borne Dis 2020;11:101407. [PMID: 32051105 DOI: 10.1016/j.ttbdis.2020.101407] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
129 Lima-Barbero JF, Sánchez MS, Cabezas-Cruz A, Mateos-Hernández L, Contreras M, de Mera IGF, Villar M, de la Fuente J. Clinical gamasoidosis and antibody response in two patients infested with Ornithonyssus bursa (Acari: Gamasida: Macronyssidae). Exp Appl Acarol 2019;78:555-64. [PMID: 31367978 DOI: 10.1007/s10493-019-00408-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
130 Papa A, Velo E, Kadiaj P, Tsioka K, Kontana A, Kota M, Bino S. Crimean-Congo hemorrhagic fever virus in ticks collected from livestock in Albania. Infect Genet Evol 2017;54:496-500. [PMID: 28827176 DOI: 10.1016/j.meegid.2017.08.017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
131 Gaye M, Amanzougaghene N, Laidoudi Y, Niang EHA, Sekeyová Z, Laroche M, Bérenger JM, Raoult D, Kazimírová M, Fenollar F, Mediannikov O. Hymenopteran Parasitoids of Hard Ticks in Western Africa and the Russian Far East. Microorganisms 2020;8:E1992. [PMID: 33327606 DOI: 10.3390/microorganisms8121992] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
132 [DOI: 10.1101/2021.03.15.435198] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
133 Wechtaisong W, Bonnet SI, Lien YY, Chuang ST, Tsai YL. Transmission of Bartonella henselae within Rhipicephalus sanguineus: Data on the Potential Vector Role of the Tick. PLoS Negl Trop Dis 2020;14:e0008664. [PMID: 33001978 DOI: 10.1371/journal.pntd.0008664] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
134 Best A, Abu Kwaik Y. Nutrition and Bipartite Metabolism of Intracellular Pathogens. Trends Microbiol 2019;27:550-61. [PMID: 30655036 DOI: 10.1016/j.tim.2018.12.012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
135 Chisu V, Foxi C, Masala G. First molecular detection of Francisella-like endosymbionts in Hyalomma and Rhipicephalus tick species collected from vertebrate hosts from Sardinia island, Italy. Exp Appl Acarol 2019;79:245-54. [PMID: 31650337 DOI: 10.1007/s10493-019-00427-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
136 Onyiche TE, Ogo NI, Thekisoe O. Species distribution, prevalence, and risk factors associated with tick infestations of equines in Nigeria. International Journal of Acarology. [DOI: 10.1080/01647954.2022.2059105] [Reference Citation Analysis]
137 Liu L, Liu YS, Liu GH, Cheng TY. Proteomics analysis of faecal proteins in the tick Haemaphysalis flava. Parasit Vectors 2018;11:89. [PMID: 29422072 DOI: 10.1186/s13071-018-2673-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
138 Adegoke A, Neff E, Geary A, Husser MC, Wilson K, Norris SM, Dharmarajan G, Karim S. Laboratory colonization by Dirofilaria immitis alters the microbiome of female Aedes aegypti mosquitoes. Parasit Vectors 2020;13:349. [PMID: 32660640 DOI: 10.1186/s13071-020-04218-8] [Reference Citation Analysis]
139 Fernández de Mera IG, Chaligiannis I, Hernández-Jarguín A, Villar M, Mateos-Hernández L, Papa A, Sotiraki S, Ruiz-Fons F, Cabezas-Cruz A, Gortázar C, de la Fuente J. Combination of RT-PCR and proteomics for the identification of Crimean-Congo hemorrhagic fever virus in ticks. Heliyon 2017;3:e00353. [PMID: 28736753 DOI: 10.1016/j.heliyon.2017.e00353] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
140 Michalski MM, Kubiak K, Szczotko M, Chajęcka M, Dmitryjuk M. Molecular Detection of Borrelia burgdorferi Sensu Lato and Anaplasma phagocytophilum in Ticks Collected from Dogs in Urban Areas of North-Eastern Poland. Pathogens 2020;9:E455. [PMID: 32526836 DOI: 10.3390/pathogens9060455] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
141 Estrada-Peña A, de la Fuente J. Host Distribution Does Not Limit the Range of the Tick Ixodes ricinus but Impacts the Circulation of Transmitted Pathogens. Front Cell Infect Microbiol 2017;7:405. [PMID: 29085806 DOI: 10.3389/fcimb.2017.00405] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
142 Jalovecka M, Hajdusek O, Sojka D, Kopacek P, Malandrin L. The Complexity of Piroplasms Life Cycles. Front Cell Infect Microbiol 2018;8:248. [PMID: 30083518 DOI: 10.3389/fcimb.2018.00248] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 11.8] [Reference Citation Analysis]
143 Contreras M, Alberdi P, Fernández De Mera IG, Krull C, Nijhof A, Villar M, De La Fuente J. Vaccinomics Approach to the Identification of Candidate Protective Antigens for the Control of Tick Vector Infestations and Anaplasma phagocytophilum Infection. Front Cell Infect Microbiol 2017;7:360. [PMID: 28848718 DOI: 10.3389/fcimb.2017.00360] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
144 Zheng W, Umemiya-Shirafuji R, Zhang Q, Okado K, Adjou Moumouni PF, Suzuki H, Chen H, Liu M, Xuan X. Porin Expression Profiles in Haemaphysalis longicornis Infected With Babesia microti. Front Physiol 2020;11:502. [PMID: 32508681 DOI: 10.3389/fphys.2020.00502] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
145 Wang F, Song Z, Chen J, Wu Q, Zhou X, Ni X, Dai J. The immunosuppressive functions of two novel tick serpins, HlSerpin-a and HlSerpin-b, from Haemaphysalis longicornis. Immunology 2020;159:109-20. [PMID: 31606893 DOI: 10.1111/imm.13130] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
146 Banović P, Díaz-Sánchez AA, Simin V, Foucault-Simonin A, Galon C, Wu-Chuang A, Mijatović D, Obregón D, Moutailler S, Cabezas-Cruz A. Clinical Aspects and Detection of Emerging Rickettsial Pathogens: A "One Health" Approach Study in Serbia, 2020. Front Microbiol 2021;12:797399. [PMID: 35154030 DOI: 10.3389/fmicb.2021.797399] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
147 Kitsou C, Foor SD, Dutta S, Bista S, Pal U. Tick gut barriers impacting tick-microbe interactions and pathogen persistence. Mol Microbiol 2021;116:1241-8. [PMID: 34570926 DOI: 10.1111/mmi.14822] [Reference Citation Analysis]
148 de la Fuente J, Estrada-Peña A, Contreras M. Modeling tick vaccines: a key tool to improve protection efficacy. Expert Rev Vaccines 2020;19:217-25. [PMID: 32192377 DOI: 10.1080/14760584.2020.1745635] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
149 Vechtova P, Sterbova J, Sterba J, Vancova M, Rego ROM, Selinger M, Strnad M, Golovchenko M, Rudenko N, Grubhoffer L. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 2018;11:594. [PMID: 30428923 DOI: 10.1186/s13071-018-3062-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
150 Talactac MR, Hernandez EP, Hatta T, Yoshii K, Kusakisako K, Tsuji N, Tanaka T. The antiviral immunity of ticks against transmitted viral pathogens. Dev Comp Immunol 2021;119:104012. [PMID: 33484780 DOI: 10.1016/j.dci.2021.104012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
151 Perveen N, Muzaffar SB, Vijayan R, Al-deeb MA. Assessing Temporal Changes in Microbial Communities in Hyalomma dromedarii Collected From Camels in the UAE Using High-Throughput Sequencing. Front Vet Sci 2022;9:861233. [DOI: 10.3389/fvets.2022.861233] [Reference Citation Analysis]
152 Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2021;42:113-44. [PMID: 33289683 DOI: 10.21775/cimb.042.113] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
153 Stiasny K, Santonja I, Holzmann H, Essl A, Stanek G, Kundi M, Heinz FX. The regional decline and rise of tick-borne encephalitis incidence do not correlate with Lyme borreliosis, Austria, 2005 to 2018. Euro Surveill 2021;26. [PMID: 34477056 DOI: 10.2807/1560-7917.ES.2021.26.35.2002108] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
154 Burnard D, Shao R. Mitochondrial genome analysis reveals intraspecific variation within Australian hard tick species. Ticks and Tick-borne Diseases 2019;10:677-81. [DOI: 10.1016/j.ttbdis.2019.02.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
155 González J, González MG, Valcárcel F, Sánchez M, Martín-Hernández R, Tercero JM, Olmeda AS. Prevalence of Coxiella burnetii (Legionellales: Coxiellaceae) Infection Among Wildlife Species and the Tick Hyalomma lusitanicum (Acari: Ixodidae) in a Meso-Mediterranean Ecosystem. J Med Entomol 2020;57:551-6. [PMID: 31589748 DOI: 10.1093/jme/tjz169] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
156 Selmi R, Belkahia H, Sazmand A, Ben Said M, Messadi L. Epidemiology and genetic characteristics of tick-borne bacteria in dromedary camels of the world. Acta Trop 2022;234:106599. [PMID: 35810831 DOI: 10.1016/j.actatropica.2022.106599] [Reference Citation Analysis]
157 Selmi R, Ben Said M, Mamlouk A, Ben Yahia H, Messadi L. Molecular detection and genetic characterization of the potentially pathogenic Coxiella burnetii and the endosymbiotic Candidatus Midichloria mitochondrii in ticks infesting camels (Camelus dromedarius) from Tunisia. Microb Pathog 2019;136:103655. [PMID: 31398530 DOI: 10.1016/j.micpath.2019.103655] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
158 Charrier NP, Couton M, Voordouw MJ, Rais O, Durand-Hermouet A, Hervet C, Plantard O, Rispe C. Whole body transcriptomes and new insights into the biology of the tick Ixodes ricinus. Parasit Vectors 2018;11:364. [PMID: 29941016 DOI: 10.1186/s13071-018-2932-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
159 Sprong H, Azagi T, Hoornstra D, Nijhof AM, Knorr S, Baarsma ME, Hovius JW. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasit Vectors 2018;11:145. [PMID: 29510749 DOI: 10.1186/s13071-018-2744-5] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 11.0] [Reference Citation Analysis]
160 Lee S, Kim JY, Yi MH, Lee IY, Fyumagwa R, Yong TS. Comparative microbiomes of ticks collected from a black rhino and its surrounding environment. Int J Parasitol Parasites Wildl 2019;9:239-43. [PMID: 31198683 DOI: 10.1016/j.ijppaw.2019.05.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
161 Estrada-Peña A, Villar M, Artigas-Jerónimo S, López V, Alberdi P, Cabezas-Cruz A, de la Fuente J. Use of Graph Theory to Characterize Human and Arthropod Vector Cell Protein Response to Infection With Anaplasma phagocytophilum. Front Cell Infect Microbiol 2018;8:265. [PMID: 30123779 DOI: 10.3389/fcimb.2018.00265] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
162 Martínez-Diaz HC, Forero-Becerra E, Hidalgo M, Labruna MB. Experimental infection and vector competence of Amblyomma patinoi, a member of the Amblyomma cajennense species complex, for the human pathogen Rickettsia rickettsii. Ticks Tick Borne Dis 2021;12:101751. [PMID: 34130146 DOI: 10.1016/j.ttbdis.2021.101751] [Reference Citation Analysis]
163 Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, Caignard G, Vitour D, Richardson J, Lacour S, Attoui H, Bell-Sakyi L, Allain E, Nijhof AM, Militzer N, Pinecki Socias S, de la Fuente J. Tick Importin-α Is Implicated in the Interactome and Regulome of the Cofactor Subolesin. Pathogens 2021;10:457. [PMID: 33920361 DOI: 10.3390/pathogens10040457] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
164 Hamilton PT, Maluenda E, Sarr A, Belli A, Hurry G, Duron O, Plantard O, Voordouw MJ. Borrelia afzelii Infection in the Rodent Host Has Dramatic Effects on the Bacterial Microbiome of Ixodes ricinus Ticks. Appl Environ Microbiol 2021;87:e0064121. [PMID: 34191531 DOI: 10.1128/AEM.00641-21] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
165 Salje J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat Rev Microbiol 2021;19:375-90. [PMID: 33564174 DOI: 10.1038/s41579-020-00507-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
166 Lv J, Fernández de Marco MDM, Goharriz H, Phipps LP, McElhinney LM, Hernández-Triana LM, Wu S, Lin X, Fooks AR, Johnson N. Detection of tick-borne bacteria and babesia with zoonotic potential in Argas (Carios) vespertilionis (Latreille, 1802) ticks from British bats. Sci Rep 2018;8:1865. [PMID: 29382871 DOI: 10.1038/s41598-018-20138-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
167 Shuaib YA, Elhag AMW, Brima YA, Abdalla MA, Bakiet AO, Mohmed-Noor SE, Lemhöfer G, Bestehorn M, Poppert S, Schaper S, Dobler G, Bakkes DK, Chitimia-Dobler L. Ixodid tick species and two tick-borne pathogens in three areas in the Sudan. Parasitol Res 2020;119:385-94. [PMID: 31901105 DOI: 10.1007/s00436-019-06458-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
168 Krige AS, Thompson RCA, Seidlitz A, Keatley S, Botero A, Clode PL. 'Hook, line, and sinker': Fluorescence in situ hybridisation (FISH) uncovers Trypanosoma noyesi in Australian questing ticks. Ticks Tick Borne Dis 2021;12:101596. [PMID: 33126202 DOI: 10.1016/j.ttbdis.2020.101596] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
169 Chisu V, Foxi C, Masala G. First molecular detection of the human pathogen Rickettsia raoultii and other spotted fever group rickettsiae in Ixodid ticks from wild and domestic mammals. Parasitol Res 2018;117:3421-9. [PMID: 30078071 DOI: 10.1007/s00436-018-6036-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
170 Contreras M, Villar M, de la Fuente J. A Vaccinomics Approach for the Identification of Tick Protective Antigens for the Control of Ixodes ricinus and Dermacentor reticulatus Infestations in Companion Animals. Front Physiol 2019;10:977. [PMID: 31417430 DOI: 10.3389/fphys.2019.00977] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
171 Benelli G. Managing mosquitoes and ticks in a rapidly changing world - Facts and trends. Saudi J Biol Sci 2019;26:921-9. [PMID: 31303820 DOI: 10.1016/j.sjbs.2018.06.007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
172 Hernandez EP, Anisuzzaman, Alim MA, Kawada H, Kwofie KD, Ladzekpo D, Koike Y, Inoue T, Sasaki S, Mikami F, Matsubayashi M, Tanaka T, Tsuji N, Hatta T. Ambivalent Roles of Oxidative Stress in Triangular Relationships among Arthropod Vectors, Pathogens and Hosts. Antioxidants 2022;11:1254. [DOI: 10.3390/antiox11071254] [Reference Citation Analysis]
173 Agany DDM, Potts R, Gonzalez Hernandez JL, Gnimpieba EZ, Pietri JE. Microbiome Differences between Human Head and Body Lice Ecotypes Revealed by 16S rRNA Gene Amplicon Sequencing. Journal of Parasitology 2020;106:14. [DOI: 10.1645/19-132] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
174 Alanazi AD, Alouffi AS, Alyousif MS, Alshahrani MY, Abdullah HHAM, Abdel-Shafy S, Calvani NED, Ansari-Lari M, Sazmand A, Otranto D. Molecular Survey of Vector-Borne Pathogens of Dogs and Cats in Two Regions of Saudi Arabia. Pathogens 2020;10:25. [PMID: 33396491 DOI: 10.3390/pathogens10010025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
175 Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021;12:773211. [PMID: 34956136 DOI: 10.3389/fmicb.2021.773211] [Reference Citation Analysis]
176 Cabezas-Cruz A, Hodžić A, Mateos-Hernández L, Contreras M, de la Fuente J. Tick-human interactions: from allergic klendusity to the α-Gal syndrome. Biochem J 2021;478:1783-94. [PMID: 33988703 DOI: 10.1042/BCJ20200915] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
177 Richards S, Langley R, Apperson C, Watson E. Do Tick Attachment Times Vary between Different Tick-Pathogen Systems? Environments 2017;4:37. [DOI: 10.3390/environments4020037] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
178 Díaz-Sánchez S, Fernández AM, Habela MA, Calero-Bernal R, de Mera IGF, de la Fuente J. Microbial community of Hyalomma lusitanicum is dominated by Francisella-like endosymbiont. Ticks Tick Borne Dis 2021;12:101624. [PMID: 33418339 DOI: 10.1016/j.ttbdis.2020.101624] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
179 Sun Y, He L, Yu L, Guo J, Nie Z, Liu Q, Zhao J. Cathepsin L-a novel cysteine protease from Haemaphysalis flava Neumann, 1897. Parasitol Res 2019;118:1581-92. [PMID: 30826925 DOI: 10.1007/s00436-019-06271-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
180 Milholland MT, Xu G, Rich SM, Machtinger ET, Mullinax JM, Li AY. Pathogen Coinfections Harbored by Adult Ixodes scapularis from White-Tailed Deer Compared with Questing Adults Across Sites in Maryland, USA. Vector Borne Zoonotic Dis 2021;21:86-91. [PMID: 33316206 DOI: 10.1089/vbz.2020.2644] [Reference Citation Analysis]
181 Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022;12:809052. [DOI: 10.3389/fcimb.2022.809052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
182 Rego ROM, Lopez JE, Cabezas-Cruz A. Editorial: Biological Drivers of Vector-Pathogen Interactions. Front Cell Infect Microbiol 2020;10:609495. [PMID: 33194846 DOI: 10.3389/fcimb.2020.609495] [Reference Citation Analysis]
183 Fishburn AT, Pham OH, Kenaston MW, Beesabathuni NS, Shah PS. Let's Get Physical: Flavivirus-Host Protein-Protein Interactions in Replication and Pathogenesis. Front Microbiol 2022;13:847588. [PMID: 35308381 DOI: 10.3389/fmicb.2022.847588] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
184 Yuan C, Wu J, Peng Y, Li Y, Shen S, Deng F, Hu Z, Zhou J, Wang M, Zou Z. Transcriptome analysis of the innate immune system of Hyalomma asiaticum. J Invertebr Pathol 2020;177:107481. [PMID: 33035534 DOI: 10.1016/j.jip.2020.107481] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
185 Maitre A, Wu-Chuang A, Aželytė J, Palinauskas V, Mateos-Hernández L, Obregon D, Hodžić A, Valiente Moro C, Estrada-Peña A, Paoli JC, Falchi A, Cabezas-Cruz A. Vector microbiota manipulation by host antibodies: the forgotten strategy to develop transmission-blocking vaccines. Parasit Vectors 2022;15:4. [PMID: 34983601 DOI: 10.1186/s13071-021-05122-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
186 Otranto D, Dantas-Torres F, Fourie JJ, Lorusso V, Varloud M, Gradoni L, Drake J, Geurden T, Kaminsky R, Heckeroth AR, Schunack B, Pollmeier M, Beugnet F, Holdsworth P. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) guidelines for studies evaluating the efficacy of parasiticides in reducing the risk of vector-borne pathogen transmission in dogs and cats. Vet Parasitol 2021;290:109369. [PMID: 33548595 DOI: 10.1016/j.vetpar.2021.109369] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
187 Koči J, Bista S, Chirania P, Yang X, Kitsou C, Rana VS, Yas OB, Sonenshine DE, Pal U. Antibodies against EGF-like domains in Ixodes scapularis BM86 orthologs impact tick feeding and survival of Borrelia burgdorferi. Sci Rep 2021;11:6095. [PMID: 33731754 DOI: 10.1038/s41598-021-85624-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
188 Perveen N, Muzaffar SB, Al-Deeb MA. Four Tick-Borne Microorganisms and Their Prevalence in Hyalomma Ticks Collected from Livestock in United Arab Emirates. Pathogens 2021;10:1005. [PMID: 34451469 DOI: 10.3390/pathogens10081005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
189 Maitre A, Wu-Chuang A, Mateos-Hernández L, Foucault-Simonin A, Moutailler S, Paoli JC, Falchi A, Díaz-Sánchez AA, Banović P, Obregón D, Cabezas-Cruz A. Rickettsia helvetica infection is associated with microbiome modulation in Ixodes ricinus collected from humans in Serbia. Sci Rep 2022;12:11464. [PMID: 35794219 DOI: 10.1038/s41598-022-15681-x] [Reference Citation Analysis]