BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yao S, Chen Z, Yu Y, Zhang N, Jiang H, Zhang G, Zhang Z, Zhang B. Current Pharmacological Strategies for Duchenne Muscular Dystrophy. Front Cell Dev Biol 2021;9:689533. [PMID: 34490244 DOI: 10.3389/fcell.2021.689533] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Eichler H, Kossmeier M, Zeitlinger M, Schwarzer-daum B. Orphan drugs’ clinical uncertainty and prices: Addressing allocative and technical inefficiencies in orphan drug reimbursement. Front Pharmacol 2023;14. [DOI: 10.3389/fphar.2023.1074512] [Reference Citation Analysis]
2 Guhathakurta P, Carter AL, Thompson AR, Kurila D, LaFrence J, Zhang L, Trask JR, Vanderheyden B, Muretta JM, Ervasti JM, Thomas DD. Enhancing interaction of actin and actin-binding domain 1 of dystrophin with modulators: Toward improved gene therapy for Duchenne muscular dystrophy. J Biol Chem 2022;298:102675. [PMID: 36372234 DOI: 10.1016/j.jbc.2022.102675] [Reference Citation Analysis]
3 Kracht KD, Eichorn NL, Berlau DJ. Perspectives on the advances in the pharmacotherapeutic management of Duchenne muscular dystrophy. Expert Opin Pharmacother 2022. [PMID: 36168943 DOI: 10.1080/14656566.2022.2130246] [Reference Citation Analysis]
4 Den Hartog L, Asakura A. Implications of notch signaling in duchenne muscular dystrophy. Front Physiol 2022;13:984373. [DOI: 10.3389/fphys.2022.984373] [Reference Citation Analysis]
5 Fan S, Huang X, Tong H, Hong H, Lai Z, Hu W, Liu X, Zhang L, Jiang Z, Yu Q. p-TAK1 acts as a switch between myoblast proliferation phase and differentiation phase in mdx mice via regulating HO-1 expression. Eur J Pharmacol 2022;933:175277. [PMID: 36113553 DOI: 10.1016/j.ejphar.2022.175277] [Reference Citation Analysis]
6 Ferrer-mallol E, Matthews C, Stoodley M, Gaeta A, George E, Reuben E, Johnson A, Davies EH. Patient-led development of digital endpoints and the use of computer vision analysis in assessment of motor function in rare diseases. Front Pharmacol 2022;13:916714. [DOI: 10.3389/fphar.2022.916714] [Reference Citation Analysis]
7 Tominari T, Aoki Y. Clinical development of novel therapies for Duchenne muscular dystrophy—Current and future. Neurology & Clinical Neurosc 2022. [DOI: 10.1111/ncn3.12656] [Reference Citation Analysis]
8 Saifullah, Motohashi N, Tsukahara T, Aoki Y. Development of Therapeutic RNA Manipulation for Muscular Dystrophy. Front Genome Ed 2022;4:863651. [DOI: 10.3389/fgeed.2022.863651] [Reference Citation Analysis]
9 Vera CD, Zhang A, Pang PD, Wu JC. Treating Duchenne Muscular Dystrophy: The Promise of Stem Cells, Artificial Intelligence, and Multi-Omics. Front Cardiovasc Med 2022;9:851491. [DOI: 10.3389/fcvm.2022.851491] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Migliore B, Zhou L, Duparc M, Robles V, Rehder C, Peay H, Kucera K. Evaluation of the GSP Creatine Kinase-MM Assay and Assessment of CK-MM Stability in Newborn, Patient, and Contrived Dried Blood Spots for Newborn Screening for Duchenne Muscular Dystrophy. IJNS 2022;8:12. [DOI: 10.3390/ijns8010012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]