1 |
Shekari F, Abyadeh M, Meyfour A, Mirzaei M, Chitranshi N, Gupta V, Graham SL, Salekdeh GH. Extracellular Vesicles as reconfigurable therapeutics for eye diseases: Promises and hurdles. Prog Neurobiol 2023;:102437. [PMID: 36931589 DOI: 10.1016/j.pneurobio.2023.102437] [Reference Citation Analysis]
|
2 |
Dai W, Dong Y, Han T, Wang J, Gao B, Guo H, Xu F, Li J, Ma Y. Microenvironmental cue-regulated exosomes as therapeutic strategies for improving chronic wound healing. NPG Asia Mater 2022;14. [DOI: 10.1038/s41427-022-00419-y] [Reference Citation Analysis]
|
3 |
Femminò S, Bonelli F, Brizzi MF. Extracellular vesicles in cardiac repair and regeneration: Beyond stem-cell-based approaches. Front Cell Dev Biol 2022;10:996887. [DOI: 10.3389/fcell.2022.996887] [Reference Citation Analysis]
|
4 |
Romano V, Belviso I, Sacco AM, Cozzolino D, Nurzynska D, Amarelli C, Maiello C, Sirico F, Di Meglio F, Castaldo C. Human Cardiac Progenitor Cell-Derived Extracellular Vesicles Exhibit Promising Potential for Supporting Cardiac Repair in Vitro. Front Physiol 2022;13:879046. [PMID: 35669580 DOI: 10.3389/fphys.2022.879046] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Jiang H, Zhao H, Zhang M, He Y, Li X, Xu Y, Liu X. Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Front Immunol 2022;13:824188. [PMID: 35444652 DOI: 10.3389/fimmu.2022.824188] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
|
6 |
Guarino B, Katari V, Adapala R, Bhavnani N, Dougherty J, Khan M, Paruchuri S, Thodeti C. Tumor-Derived Extracellular Vesicles Induce Abnormal Angiogenesis via TRPV4 Downregulation and Subsequent Activation of YAP and VEGFR2. Front Bioeng Biotechnol 2021;9:790489. [PMID: 35004649 DOI: 10.3389/fbioe.2021.790489] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Liu C, Bayado N, He D, Li J, Chen H, Li L, Li J, Long X, Du T, Tang J, Dang Y, Fan Z, Wang L, Yang PC. Therapeutic Applications of Extracellular Vesicles for Myocardial Repair. Front Cardiovasc Med 2021;8:758050. [PMID: 34957249 DOI: 10.3389/fcvm.2021.758050] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
8 |
Khan K, Gasbarrino K, Mahmoud I, Dufresne L, Daskalopoulou SS, Schwertani A, Cecere R. Bioactive Scaffolds in Stem Cell-Based Therapies for Myocardial Infarction: a Systematic Review and Meta-Analysis of Preclinical Trials. Stem Cell Rev Rep 2021. [PMID: 34463903 DOI: 10.1007/s12015-021-10186-y] [Reference Citation Analysis]
|
9 |
Gao Y, Wu D, Jia D, Guo Q, Wang M, Yang R, Zhang X, Chen M, Zhang D. Hypoxic Stem Cell-Derived Extracellular Vesicles for Cardiac Repair in Preclinical Animal Models of Myocardial Infarction: A Meta-Analysis. Stem Cells Dev 2021. [PMID: 34271845 DOI: 10.1089/scd.2021.0084] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
10 |
Thej C, Kishore R. Unfathomed Nanomessages to the Heart: Translational Implications of Stem Cell-Derived, Progenitor Cell Exosomes in Cardiac Repair and Regeneration. Cells 2021;10:1811. [PMID: 34359980 DOI: 10.3390/cells10071811] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
11 |
Zhang Y, Tan J, Miao Y, Zhang Q. The effect of extracellular vesicles on the regulation of mitochondria under hypoxia. Cell Death Dis 2021;12:358. [PMID: 33824273 DOI: 10.1038/s41419-021-03640-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
|
12 |
Ghodrat S, Hoseini SJ, Asadpour S, Nazarnezhad S, Alizadeh Eghtedar F, Kargozar S. Stem cell-based therapies for cardiac diseases: The critical role of angiogenic exosomes. Biofactors 2021;47:270-91. [PMID: 33606893 DOI: 10.1002/biof.1717] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
13 |
Røsand Ø, Høydal MA. Cardiac Exosomes in Ischemic Heart Disease- A Narrative Review. Diagnostics (Basel) 2021;11:269. [PMID: 33572486 DOI: 10.3390/diagnostics11020269] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
14 |
Askenase PW. Ancient Evolutionary Origin and Properties of Universally Produced Natural Exosomes Contribute to Their Therapeutic Superiority Compared to Artificial Nanoparticles. Int J Mol Sci 2021;22:1429. [PMID: 33572657 DOI: 10.3390/ijms22031429] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
15 |
Nguyen BY, Azam T, Wang X. Cellular signaling cross-talk between different cardiac cell populations: an insight into the role of exosomes in the heart diseases and therapy. Am J Physiol Heart Circ Physiol 2021;320:H1213-34. [PMID: 33513083 DOI: 10.1152/ajpheart.00718.2020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
16 |
Ramachandran V, Balakrishnan A. Angiogenesis in aging hearts—Cardiac stem cell therapy. Stem Cells and Aging 2021. [DOI: 10.1016/b978-0-12-820071-1.00007-4] [Reference Citation Analysis]
|
17 |
McQuaig R, Dixit P, Yamauchi A, Van Hout I, Papannarao JB, Bunton R, Parry D, Davis P, Katare R. Combination of Cardiac Progenitor Cells From the Right Atrium and Left Ventricle Exhibits Synergistic Paracrine Effects In Vitro. Cell Transplant 2020;29:963689720972328. [PMID: 33153286 DOI: 10.1177/0963689720972328] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|