1 |
Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front Vet Sci 2022;9:933274. [DOI: 10.3389/fvets.2022.933274] [Reference Citation Analysis]
|
2 |
Pitsillou E, Liang J, Karagiannis C, Ververis K, Darmawan KK, Ng K, Hung A, Karagiannis TC. Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay. Comput Biol Chem 2020;89:107408. [PMID: 33137690 DOI: 10.1016/j.compbiolchem.2020.107408] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
3 |
Pradeep M, Franklin G. Understanding the hypericin biosynthesis via reversible inhibition of dark gland development in Hypericum perforatum L. Industrial Crops and Products 2022;182:114876. [DOI: 10.1016/j.indcrop.2022.114876] [Reference Citation Analysis]
|
4 |
Chen H, Chen J, Shi X, Li L, Xu S. Naringenin protects swine testis cells from bisphenol A-induced apoptosis via Keap1/Nrf2 signaling pathway. Biofactors 2021. [PMID: 34914851 DOI: 10.1002/biof.1814] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
5 |
Chen H, Zhang Y, Zou M, Sun X, Huang X, Xu S. Dibutyl phthalate-induced oxidative stress and apoptosis in swine testis cells and therapy of naringenin via PTEN/PI3K/AKT signaling pathway. Environ Toxicol 2022. [PMID: 35363423 DOI: 10.1002/tox.23531] [Reference Citation Analysis]
|
6 |
Zhang Y, Chen H, Zou M, Oerlemans R, Shao C, Ren Y, Zhang R, Huang X, Li G, Cong Y. Hypericin Inhibit Alpha-Coronavirus Replication by Targeting 3CL Protease. Viruses 2021;13:1825. [PMID: 34578406 DOI: 10.3390/v13091825] [Reference Citation Analysis]
|
7 |
Abaidullah M, Peng S, Song X, Zou Y, Li L, Jia R, Yin Z. Chlorogenic acid is a positive regulator of MDA5, TLR7 and NF-κB signaling pathways mediated antiviral responses against Gammacoronavirus infection. Int Immunopharmacol 2021;96:107671. [PMID: 33971495 DOI: 10.1016/j.intimp.2021.107671] [Reference Citation Analysis]
|
8 |
Adnadjevic B, Koturevic B, Jovanovic J. Isothermal kinetics of ethanolic extraction of total hypericin from pre-extracted Hypericum perforatum flowers. Phytochem Anal 2021;32:757-66. [PMID: 33319396 DOI: 10.1002/pca.3021] [Reference Citation Analysis]
|
9 |
Olubiyi OO, Olagunju M, Keutmann M, Loschwitz J, Strodel B. High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2. Molecules 2020;25:E3193. [PMID: 32668701 DOI: 10.3390/molecules25143193] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 15.0] [Reference Citation Analysis]
|
10 |
Cossu M, Ledda L, Cossu A. Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination. Food Res Int 2021;144:110358. [PMID: 34053551 DOI: 10.1016/j.foodres.2021.110358] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
11 |
Shahhamzehei N, Abdelfatah S, Efferth T. In Silico and In Vitro Identification of Pan-Coronaviral Main Protease Inhibitors from a Large Natural Product Library. Pharmaceuticals 2022;15:308. [DOI: 10.3390/ph15030308] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
|
12 |
Chamkhi I, Benali T, Aanniz T, El Menyiy N, Guaouguaou FE, El Omari N, El-Shazly M, Zengin G, Bouyahya A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. Plant Physiol Biochem 2021;167:269-95. [PMID: 34391201 DOI: 10.1016/j.plaphy.2021.08.001] [Reference Citation Analysis]
|
13 |
Cao K, Zhang Y, Yao Q, Peng Y, Pan Q, Jiao Q, Ren K, Sun F, Zhang Q, Guo R, Zhang J, Chen T. Hypericin blocks the function of HSV-1 alkaline nuclease and suppresses viral replication. J Ethnopharmacol 2022;296:115524. [PMID: 35811028 DOI: 10.1016/j.jep.2022.115524] [Reference Citation Analysis]
|
14 |
Romeo A, Iacovelli F, Falconi M. Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Virus Res 2020;286:198068. [PMID: 32565126 DOI: 10.1016/j.virusres.2020.198068] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
|
15 |
Pitsillou E, Liang J, Ververis K, Hung A, Karagiannis TC. Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. J Mol Graph Model 2021;104:107851. [PMID: 33556646 DOI: 10.1016/j.jmgm.2021.107851] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Zhang J, Gao L, Hu J, Wang C, Hagedoorn P, Li N, Zhou X. Hypericin: Source, Determination, Separation, and Properties. Separation & Purification Reviews 2022;51:1-10. [DOI: 10.1080/15422119.2020.1797792] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
|