BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen H, Feng R, Muhammad I, Abbas G, Zhang Y, Ren Y, Huang X, Zhang R, Diao L, Wang X, Li G. Protective effects of hypericin against infectious bronchitis virus induced apoptosis and reactive oxygen species in chicken embryo kidney cells. Poult Sci 2019;98:6367-77. [PMID: 31399732 DOI: 10.3382/ps/pez465] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front Vet Sci 2022;9:933274. [DOI: 10.3389/fvets.2022.933274] [Reference Citation Analysis]
2 Pitsillou E, Liang J, Karagiannis C, Ververis K, Darmawan KK, Ng K, Hung A, Karagiannis TC. Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay. Comput Biol Chem 2020;89:107408. [PMID: 33137690 DOI: 10.1016/j.compbiolchem.2020.107408] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
3 Pradeep M, Franklin G. Understanding the hypericin biosynthesis via reversible inhibition of dark gland development in Hypericum perforatum L. Industrial Crops and Products 2022;182:114876. [DOI: 10.1016/j.indcrop.2022.114876] [Reference Citation Analysis]
4 Chen H, Chen J, Shi X, Li L, Xu S. Naringenin protects swine testis cells from bisphenol A-induced apoptosis via Keap1/Nrf2 signaling pathway. Biofactors 2021. [PMID: 34914851 DOI: 10.1002/biof.1814] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Chen H, Zhang Y, Zou M, Sun X, Huang X, Xu S. Dibutyl phthalate-induced oxidative stress and apoptosis in swine testis cells and therapy of naringenin via PTEN/PI3K/AKT signaling pathway. Environ Toxicol 2022. [PMID: 35363423 DOI: 10.1002/tox.23531] [Reference Citation Analysis]
6 Zhang Y, Chen H, Zou M, Oerlemans R, Shao C, Ren Y, Zhang R, Huang X, Li G, Cong Y. Hypericin Inhibit Alpha-Coronavirus Replication by Targeting 3CL Protease. Viruses 2021;13:1825. [PMID: 34578406 DOI: 10.3390/v13091825] [Reference Citation Analysis]
7 Abaidullah M, Peng S, Song X, Zou Y, Li L, Jia R, Yin Z. Chlorogenic acid is a positive regulator of MDA5, TLR7 and NF-κB signaling pathways mediated antiviral responses against Gammacoronavirus infection. Int Immunopharmacol 2021;96:107671. [PMID: 33971495 DOI: 10.1016/j.intimp.2021.107671] [Reference Citation Analysis]
8 Adnadjevic B, Koturevic B, Jovanovic J. Isothermal kinetics of ethanolic extraction of total hypericin from pre-extracted Hypericum perforatum flowers. Phytochem Anal 2021;32:757-66. [PMID: 33319396 DOI: 10.1002/pca.3021] [Reference Citation Analysis]
9 Olubiyi OO, Olagunju M, Keutmann M, Loschwitz J, Strodel B. High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2. Molecules 2020;25:E3193. [PMID: 32668701 DOI: 10.3390/molecules25143193] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 15.0] [Reference Citation Analysis]
10 Cossu M, Ledda L, Cossu A. Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination. Food Res Int 2021;144:110358. [PMID: 34053551 DOI: 10.1016/j.foodres.2021.110358] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Shahhamzehei N, Abdelfatah S, Efferth T. In Silico and In Vitro Identification of Pan-Coronaviral Main Protease Inhibitors from a Large Natural Product Library. Pharmaceuticals 2022;15:308. [DOI: 10.3390/ph15030308] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
12 Chamkhi I, Benali T, Aanniz T, El Menyiy N, Guaouguaou FE, El Omari N, El-Shazly M, Zengin G, Bouyahya A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. Plant Physiol Biochem 2021;167:269-95. [PMID: 34391201 DOI: 10.1016/j.plaphy.2021.08.001] [Reference Citation Analysis]
13 Cao K, Zhang Y, Yao Q, Peng Y, Pan Q, Jiao Q, Ren K, Sun F, Zhang Q, Guo R, Zhang J, Chen T. Hypericin blocks the function of HSV-1 alkaline nuclease and suppresses viral replication. J Ethnopharmacol 2022;296:115524. [PMID: 35811028 DOI: 10.1016/j.jep.2022.115524] [Reference Citation Analysis]
14 Romeo A, Iacovelli F, Falconi M. Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Virus Res 2020;286:198068. [PMID: 32565126 DOI: 10.1016/j.virusres.2020.198068] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
15 Pitsillou E, Liang J, Ververis K, Hung A, Karagiannis TC. Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. J Mol Graph Model 2021;104:107851. [PMID: 33556646 DOI: 10.1016/j.jmgm.2021.107851] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zhang J, Gao L, Hu J, Wang C, Hagedoorn P, Li N, Zhou X. Hypericin: Source, Determination, Separation, and Properties. Separation & Purification Reviews 2022;51:1-10. [DOI: 10.1080/15422119.2020.1797792] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]