BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Taghizadeh B, Taranejoo S, Monemian SA, Salehi Moghaddam Z, Daliri K, Derakhshankhah H, Derakhshani Z. Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Deliv 2015;22:145-55. [PMID: 24547737 DOI: 10.3109/10717544.2014.887157] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 8.6] [Reference Citation Analysis]
Number Citing Articles
1 Rajan R, Pal K, Jayadev D, Jayan JS, U A, Appukuttan S, de Souza FG, Joseph K, Kumar SS. Polymeric Nanoparticles in Hybrid Catalytic Processing and Drug Delivery System. Top Catal. [DOI: 10.1007/s11244-022-01697-0] [Reference Citation Analysis]
2 Rezaei A, Rafieian F, Akbari-Alavijeh S, Kharazmi MS, Jafari SM. Release of bioactive compounds from delivery systems by stimuli-responsive approaches; triggering factors, mechanisms, and applications. Adv Colloid Interface Sci 2022;307:102728. [PMID: 35843031 DOI: 10.1016/j.cis.2022.102728] [Reference Citation Analysis]
3 Yuan M, Harnett MC, Yan T, Georgas E, Qin Y, Zhou H, Wang Y. Progress, Opportunities, and Challenges of Magneto-Plasmonic Nanoparticles under Remote Magnetic and Light Stimulation for Brain-Tissue and Cellular Regeneration. Nanomaterials 2022;12:2242. [DOI: 10.3390/nano12132242] [Reference Citation Analysis]
4 Han SM, Kim JC, Shin Y, Lee D, Sim T, Lim C, Kang K, Lee ES, Youn YS, Oh KT. Development of a pH-Responsive Polymer Based on Hyaluronic Acid Conjugated with Imidazole and Dodecylamine for Nanomedicine Delivery. Macromol Res . [DOI: 10.1007/s13233-022-0063-3] [Reference Citation Analysis]
5 Aziz T, Ullah A, Ali A, Shabeer M, Shah MN, Haq F, Iqbal M, Ullah R, Khan FU. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field. J of Applied Polymer Sci. [DOI: 10.1002/app.52624] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
6 Sastri TK, Gupta VN, Chakraborty S, Madhusudhan S, Kumar H, Chand P, Jain V, Veeranna B, Gowda DV. Novel Gels: An Emerging Approach for Delivering of Therapeutic Molecules and Recent Trends. Gels 2022;8:316. [DOI: 10.3390/gels8050316] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Li H, Zhang Y, Xu M, Yang D. Current trends of targeted therapy for oral squamous cell carcinoma. J Cancer Res Clin Oncol 2022. [PMID: 35501496 DOI: 10.1007/s00432-022-04028-8] [Reference Citation Analysis]
8 Sobczak M. Enzyme-Responsive Hydrogels as Potential Drug Delivery Systems-State of Knowledge and Future Prospects. Int J Mol Sci 2022;23:4421. [PMID: 35457239 DOI: 10.3390/ijms23084421] [Reference Citation Analysis]
9 Alqosaibi AI. Nanocarriers for anticancer drugs: challenges and perspectives. Saudi Journal of Biological Sciences 2022. [DOI: 10.1016/j.sjbs.2022.103298] [Reference Citation Analysis]
10 Cheng Z, Huang Y, Shao P, Wang L, Zhu S, Yu J, Lu W. Hypoxia-Activated Albumin-Binding Exatecan Prodrug for Cancer Therapy. ACS Omega 2022;7:1082-9. [PMID: 35036771 DOI: 10.1021/acsomega.1c05671] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Li Z, Gao Y, Li W, Li Y, Lv H, Zhang D, Peng J, Cheng W, Mei L, Chen H, Zeng X. Charge-reversal nanomedicines as a smart bullet for deep tumor penetration. Smart Materials in Medicine 2022. [DOI: 10.1016/j.smaim.2022.01.008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
12 Liu R, Peng Y, Lu L, Peng S, Chen T, Zhan M. Near-infrared light-triggered nano-prodrug for cancer gas therapy. J Nanobiotechnology 2021;19:443. [PMID: 34949202 DOI: 10.1186/s12951-021-01078-x] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
13 Damera DP, Nag A. Tuning the phase transition temperature of hybrid Span60-L64 thermoresponsive niosomes: Insights from fluorescence and Raman spectroscopy. Journal of Molecular Liquids 2021;340:117110. [DOI: 10.1016/j.molliq.2021.117110] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Liang J, Yang B, Zhou X, Han Q, Zou J, Cheng L. Stimuli-responsive drug delivery systems for head and neck cancer therapy. Drug Deliv 2021;28:272-84. [PMID: 33501883 DOI: 10.1080/10717544.2021.1876182] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
15 Yadav P, Jain J, Sherje AP. Recent advances in nanocarriers-based drug delivery for cancer therapeutics: A review. Reactive and Functional Polymers 2021;165:104970. [DOI: 10.1016/j.reactfunctpolym.2021.104970] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Sadeghian I, Hemmati S. Characterization of a Stable Form of Carboxypeptidase G2 (Glucarpidase), a Potential Biobetter Variant, From Acinetobacter sp. 263903-1. Mol Biotechnol 2021. [PMID: 34268672 DOI: 10.1007/s12033-021-00370-3] [Reference Citation Analysis]
17 Xu Y, Zheng H, Schumacher D, Liehn EA, Slabu I, Rusu M. Recent Advancements of Specific Functionalized Surfaces of Magnetic Nano- and Microparticles as a Theranostics Source in Biomedicine. ACS Biomater Sci Eng 2021;7:1914-32. [PMID: 33856199 DOI: 10.1021/acsbiomaterials.0c01393] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Metawea ORM, Abdelmoneem MA, Haiba NS, Khalil HH, Teleb M, Elzoghby AO, Khafaga AF, Noreldin AE, Albericio F, Khattab SN. A novel 'smart' PNIPAM-based copolymer for breast cancer targeted therapy: Synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf B Biointerfaces 2021;202:111694. [PMID: 33740633 DOI: 10.1016/j.colsurfb.2021.111694] [Cited by in Crossref: 2] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
19 Al Rifai N, Desgranges S, Le Guillou-Buffello D, Giron A, Urbach W, Nassereddine M, Charara J, Contino-Pépin C, Taulier N. Ultrasound-triggered delivery of paclitaxel encapsulated in an emulsion at low acoustic pressures. J Mater Chem B 2020;8:1640-8. [PMID: 32011617 DOI: 10.1039/c9tb02493j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
20 Thomas RG, Surendran SP, Jeong YY. Tumor Microenvironment-Stimuli Responsive Nanoparticles for Anticancer Therapy. Front Mol Biosci 2020;7:610533. [PMID: 33392264 DOI: 10.3389/fmolb.2020.610533] [Cited by in Crossref: 8] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
21 Zhang M, Zhang F, Liu T, Shao P, Duan L, Yan J, Mu X, Jiang J. Polydopamine Nanoparticles Camouflaged by Stem Cell Membranes for Synergistic Chemo-Photothermal Therapy of Malignant Bone Tumors. Int J Nanomedicine 2020;15:10183-97. [PMID: 33363374 DOI: 10.2147/IJN.S282931] [Cited by in Crossref: 3] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
22 Zhuo S, Zhang F, Yu J, Zhang X, Yang G, Liu X. pH-Sensitive Biomaterials for Drug Delivery. Molecules 2020;25:E5649. [PMID: 33266162 DOI: 10.3390/molecules25235649] [Cited by in Crossref: 8] [Cited by in F6Publishing: 31] [Article Influence: 4.0] [Reference Citation Analysis]
23 Sim T, Lim C, Hoang NH, Shin Y, Kim JC, Park JY, Her J, Lee ES, Youn YS, Oh KT. An On-Demand pH-Sensitive Nanocluster for Cancer Treatment by Combining Photothermal Therapy and Chemotherapy. Pharmaceutics 2020;12:E839. [PMID: 32887273 DOI: 10.3390/pharmaceutics12090839] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
24 Fathi M, Abdolahinia ED, Barar J, Omidi Y. Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine 2020;15:2171-200. [DOI: 10.2217/nnm-2020-0146] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
25 Giuli MV, Hanieh PN, Giuliani E, Rinaldi F, Marianecci C, Screpanti I, Checquolo S, Carafa M. Current Trends in ATRA Delivery for Cancer Therapy. Pharmaceutics 2020;12:E707. [PMID: 32731612 DOI: 10.3390/pharmaceutics12080707] [Cited by in Crossref: 11] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
26 Zhang J, Tang X, Huang C, Liu Z, Ye Y. Oleic Acid Copolymer as A Novel Upconversion Nanomaterial to Make Doxorubicin-Loaded Nanomicelles with Dual Responsiveness to pH and NIR. Pharmaceutics 2020;12:E680. [PMID: 32698309 DOI: 10.3390/pharmaceutics12070680] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
27 Pham SH, Choi Y, Choi J. Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery. Pharmaceutics 2020;12:E630. [PMID: 32635539 DOI: 10.3390/pharmaceutics12070630] [Cited by in Crossref: 16] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
28 Tao Y, Cai K, Liu S, Zhang Y, Chi Z, Xu J. Pseudo target release behavior of simvastatin through pH-responsive polymer based on dynamic imine bonds: Promotes rapid proliferation of osteoblasts. Mater Sci Eng C Mater Biol Appl 2020;113:110979. [PMID: 32487396 DOI: 10.1016/j.msec.2020.110979] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
29 Patil SB, Inamdar SZ, Das KK, Akamanchi KG, Patil AV, Inamadar AC, Reddy KR, Raghu AV, Kulkarni RV. Tailor-made electrically-responsive poly(acrylamide)-graft-pullulan copolymer based transdermal drug delivery systems: Synthesis, characterization, in-vitro and ex-vivo evaluation. Journal of Drug Delivery Science and Technology 2020;56:101525. [DOI: 10.1016/j.jddst.2020.101525] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
30 Xu X, Liu Y, Fu W, Yao M, Ding Z, Xuan J, Li D, Wang S, Xia Y, Cao M. Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications. Polymers (Basel) 2020;12:E580. [PMID: 32150904 DOI: 10.3390/polym12030580] [Cited by in Crossref: 59] [Cited by in F6Publishing: 96] [Article Influence: 29.5] [Reference Citation Analysis]
31 Prasad PV, Purkayastha K, Sharma U, Barik M, Tang Q. pH-Sensitive Nanomedicine for Treating Gynaecological Cancers. JWRH 2018;2:35-50. [DOI: 10.14302/issn.2381-862x.jwrh-19-3143] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
32 Agazzi ML, Herrera SE, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Insulin Delivery from Glucose‐Responsive, Self‐Assembled, Polyamine Nanoparticles: Smart “Sense‐and‐Treat” Nanocarriers Made Easy. Chem Eur J 2020;26:2456-63. [DOI: 10.1002/chem.201905075] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Le NTT, Nguyen TNQ, Cao VD, Hoang DT, Ngo VC, Hoang Thi TT. Recent Progress and Advances of Multi-Stimuli-Responsive Dendrimers in Drug Delivery for Cancer Treatment. Pharmaceutics 2019;11:E591. [PMID: 31717376 DOI: 10.3390/pharmaceutics11110591] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
34 Bielas R, Siewniak A, Skonieczna M, Adamiec M, Mielańczyk Ł, Neugebauer D. Choline based polymethacrylate matrix with pharmaceutical cations as co-delivery system for antibacterial and anti-inflammatory combined therapy. Journal of Molecular Liquids 2019;285:114-22. [DOI: 10.1016/j.molliq.2019.04.082] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
35 Esmaeilzadeh P, Groth T. Switchable and Obedient Interfacial Properties That Grant New Biomedical Applications. ACS Appl Mater Interfaces 2019;11:25637-53. [DOI: 10.1021/acsami.9b06253] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
36 Ficai A. Triggering Factors in Drug Delivery Devices. Curr Pharm Des 2019;25:107-8. [PMID: 31198109 DOI: 10.2174/138161282502190514121641] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Gola A, Sacharczuk M, Musiał W. Synthesis of AMPSA Polymeric Derivatives Monitored by Electrical Conductivity and Evaluation of Thermosensitive Properties of Resulting Microspheres. Molecules 2019;24:E1164. [PMID: 30909617 DOI: 10.3390/molecules24061164] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
38 Fukunaga K, Tsutsumi H, Mihara H. Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. BCSJ 2019;92:391-9. [DOI: 10.1246/bcsj.20180293] [Cited by in Crossref: 59] [Cited by in F6Publishing: 58] [Article Influence: 19.7] [Reference Citation Analysis]
39 Li L, Yang WW, Xu DG. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J Drug Target 2019;27:423-33. [PMID: 30173577 DOI: 10.1080/1061186X.2018.1519029] [Cited by in Crossref: 40] [Cited by in F6Publishing: 54] [Article Influence: 13.3] [Reference Citation Analysis]
40 Ji DK, Ménard-Moyon C, Bianco A. Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics. Adv Drug Deliv Rev 2019;138:211-32. [PMID: 30172925 DOI: 10.1016/j.addr.2018.08.010] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 12.7] [Reference Citation Analysis]
41 Zhang Y, Peng L, Chu J, Zhang M, Sun L, Zhong B, Wu Q. pH and redox dual-responsive copolymer micelles with surface charge reversal for co-delivery of all-trans-retinoic acid and paclitaxel for cancer combination chemotherapy. Int J Nanomedicine 2018;13:6499-515. [PMID: 30410335 DOI: 10.2147/IJN.S179046] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
42 Wang X, Wang X, Jin S, Muhammad N, Guo Z. Stimuli-Responsive Therapeutic Metallodrugs. Chem Rev 2019;119:1138-92. [PMID: 30299085 DOI: 10.1021/acs.chemrev.8b00209] [Cited by in Crossref: 186] [Cited by in F6Publishing: 273] [Article Influence: 46.5] [Reference Citation Analysis]
43 Syamala PS, Ramesan RM. Thiol redox-sensitive cationic polymers for dual delivery of drug and gene. Ther Deliv 2018;9:751-73. [PMID: 30277132 DOI: 10.4155/tde-2018-0041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
44 Huang X, Liao W, Xie Z, Chen D, Zhang CY. A pH-responsive prodrug delivery system self-assembled from acid-labile doxorubicin-conjugated amphiphilic pH-sensitive block copolymers. Materials Science and Engineering: C 2018;90:27-37. [DOI: 10.1016/j.msec.2018.04.036] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
45 Rao NV, Ko H, Lee J, Park JH. Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy. Front Bioeng Biotechnol 2018;6:110. [PMID: 30159310 DOI: 10.3389/fbioe.2018.00110] [Cited by in Crossref: 52] [Cited by in F6Publishing: 65] [Article Influence: 13.0] [Reference Citation Analysis]
46 Ghaffari R, Eslahi N, Tamjid E, Simchi A. Dual-Sensitive Hydrogel Nanoparticles Based on Conjugated Thermoresponsive Copolymers and Protein Filaments for Triggerable Drug Delivery. ACS Appl Mater Interfaces 2018;10:19336-46. [DOI: 10.1021/acsami.8b01154] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 7.3] [Reference Citation Analysis]
47 Zhou J, Wang M, Ying H, Su D, Zhang H, Lu G, Chen J. Extracellular Matrix Component Shelled Nanoparticles as Dual Enzyme-Responsive Drug Delivery Vehicles for Cancer Therapy. ACS Biomater Sci Eng 2018;4:2404-11. [DOI: 10.1021/acsbiomaterials.8b00327] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
48 Zhang Y, Wu X, Hou C, Shang K, Yang K, Tian Z, Pei Z, Qu Y, Pei Y. Dual-responsive dithio-polydopamine coated porous CeO2 nanorods for targeted and synergistic drug delivery. Int J Nanomedicine 2018;13:2161-73. [PMID: 29695903 DOI: 10.2147/IJN.S152002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
49 Ye Y, Yu J, Wen D, Kahkoska AR, Gu Z. Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev 2018;127:106-18. [PMID: 29408182 DOI: 10.1016/j.addr.2018.01.015] [Cited by in Crossref: 158] [Cited by in F6Publishing: 151] [Article Influence: 39.5] [Reference Citation Analysis]
50 El Founi M, Soliman SMA, Vanderesse R, Acherar S, Guedon E, Chevalot I, Babin J, Six J. Light-sensitive dextran-covered PNBA nanoparticles as triggered drug delivery systems: Formulation, characteristics and cytotoxicity. Journal of Colloid and Interface Science 2018;514:289-98. [DOI: 10.1016/j.jcis.2017.12.036] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
51 Xu M, Liu R, Yan Q. Biological Stimuli-responsive Polymer Systems: Design, Construction and Controlled Self-assembly. Chin J Polym Sci 2018;36:347-65. [DOI: 10.1007/s10118-018-2080-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
52 Pang L, Zhang C, Qin J, Han L, Li R, Hong C, He H, Wang J. A novel strategy to achieve effective drug delivery: exploit cells as carrier combined with nanoparticles. Drug Deliv 2017;24:83-91. [PMID: 28155538 DOI: 10.1080/10717544.2016.1230903] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 9.8] [Reference Citation Analysis]
53 Patel P, Agrawal Y. Targeting nanocarriers containing antisense oligonucleotides to cancer cell. Journal of Drug Delivery Science and Technology 2017;37:97-114. [DOI: 10.1016/j.jddst.2016.12.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
54 Cai Y, Li S, Cai M, Chen Y, Luo X. Cellular uptake of pH/reduction responsive phosphorylcholine micelles. New J Chem 2017;41:11828-38. [DOI: 10.1039/c7nj02484c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
55 Taranejoo S, Chandrasekaran R, Cheng W, Hourigan K. Bioreducible PEI-functionalized glycol chitosan: A novel gene vector with reduced cytotoxicity and improved transfection efficiency. Carbohydrate Polymers 2016;153:160-8. [DOI: 10.1016/j.carbpol.2016.07.080] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
56 Jang E, Kim E, Son H, Lim E, Lee H, Choi Y, Park K, Han S, Suh J, Huh Y, Haam S. Nanovesicle-mediated systemic delivery of microRNA-34a for CD44 overexpressing gastric cancer stem cell therapy. Biomaterials 2016;105:12-24. [DOI: 10.1016/j.biomaterials.2016.07.036] [Cited by in Crossref: 41] [Cited by in F6Publishing: 46] [Article Influence: 6.8] [Reference Citation Analysis]
57 Zhao Z, Xie H, Li Y, Jiang Y. A multi-responsive multicomponent hydrogel with micro-phase separation structure: Synthesis and special drug release. Journal of Drug Delivery Science and Technology 2016;35:184-9. [DOI: 10.1016/j.jddst.2016.06.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
58 Guo X, Wang L, Wei X, Zhou S. Polymer-based drug delivery systems for cancer treatment: REVIEWS. J Polym Sci Part A: Polym Chem 2016;54:3525-50. [DOI: 10.1002/pola.28252] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 10.0] [Reference Citation Analysis]
59 Fuchs H, Weng A, Gilabert-Oriol R. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers. Toxins (Basel) 2016;8:E200. [PMID: 27376327 DOI: 10.3390/toxins8070200] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
60 Zhang X, Zhuo R. Dual UV- and pH-Responsive Supramolecular Vesicles Mediated by Host-Guest Interactions for Drug Controlled Release. Macromol Chem Phys 2016;217:1934-40. [DOI: 10.1002/macp.201600177] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
61 Lin W, Xie X, Yang Y, Fu X, Liu H, Yang Y, Deng J. Thermosensitive magnetic liposomes with doxorubicin cell-penetrating peptides conjugate for enhanced and targeted cancer therapy. Drug Delivery 2016;23:3436-43. [DOI: 10.1080/10717544.2016.1189983] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
62 Song X, Cao M, Chen P, Xia R, Zheng Z, Miao J, Yang B, Su L, Qian J, Feng X. Preparation of pH-sensitive amphiphilic block star polymers, their self-assembling characteristics and release behavior on encapsulated molecules. Polym Bull 2017;74:183-94. [DOI: 10.1007/s00289-016-1707-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
63 Dragojevic S, Ryu JS, Raucher D. Polymer-Based Prodrugs: Improving Tumor Targeting and the Solubility of Small Molecule Drugs in Cancer Therapy. Molecules 2015;20:21750-69. [PMID: 26690101 DOI: 10.3390/molecules201219804] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 8.7] [Reference Citation Analysis]
64 Fonseca AC, Serra AC, Coelho JF. Bioabsorbable polymers in cancer therapy: latest developments. EPMA J 2015;6:22. [PMID: 26605001 DOI: 10.1186/s13167-015-0045-z] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 4.4] [Reference Citation Analysis]
65 Xie X, Lin W, Liu H, Deng J, Chen Y, Liu H, Fu X, Yang Y. Ultrasound-responsive nanobubbles contained with peptide–camptothecin conjugates for targeted drug delivery. Drug Delivery 2016;23:2756-64. [DOI: 10.3109/10717544.2015.1077289] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 5.0] [Reference Citation Analysis]