BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Copeland WC. Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol 2012;47:64-74. [PMID: 22176657 DOI: 10.3109/10409238.2011.632763] [Cited by in Crossref: 115] [Cited by in F6Publishing: 104] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Jaberi E, Chitsazian F, Ali Shahidi G, Rohani M, Sina F, Safari I, Malakouti Nejad M, Houshmand M, Klotzle B, Elahi E. The novel mutation p.Asp251Asn in the β-subunit of succinate-CoA ligase causes encephalomyopathy and elevated succinylcarnitine. J Hum Genet 2013;58:526-30. [DOI: 10.1038/jhg.2013.45] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
2 Dong DW, Pereira F, Barrett SP, Kolesar JE, Cao K, Damas J, Yatsunyk LA, Johnson FB, Kaufman BA. Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints. BMC Genomics 2014;15:677. [PMID: 25124333 DOI: 10.1186/1471-2164-15-677] [Cited by in Crossref: 70] [Cited by in F6Publishing: 58] [Article Influence: 8.8] [Reference Citation Analysis]
3 Akhmedov AT, Marín-garcía J. Mitochondrial DNA maintenance: an appraisal. Mol Cell Biochem 2015;409:283-305. [DOI: 10.1007/s11010-015-2532-x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 6.4] [Reference Citation Analysis]
4 Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. Cerebellum 2014;13:269-302. [PMID: 24307138 DOI: 10.1007/s12311-013-0539-y] [Cited by in Crossref: 83] [Cited by in F6Publishing: 69] [Article Influence: 10.4] [Reference Citation Analysis]
5 Nogueira C, Almeida LS, Nesti C, Pezzini I, Videira A, Vilarinho L, Santorelli FM. Syndromes associated with mitochondrial DNA depletion. Ital J Pediatr 2014;40:34. [PMID: 24708634 DOI: 10.1186/1824-7288-40-34] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
6 Ylikallio E, Tyynismaa H. Generating Mouse Models of Mitochondrial Disease. Movement Disorders. Elsevier; 2015. pp. 689-701. [DOI: 10.1016/b978-0-12-405195-9.00043-3] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
7 Pawar T, Bjørås M, Klungland A, Eide L. Metabolism and DNA repair shape a specific modification pattern in mitochondrial DNA. Mitochondrion 2018;40:16-28. [PMID: 28893634 DOI: 10.1016/j.mito.2017.09.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
8 Zhang F, Qi Y, Zhou K, Zhang G, Linask K, Xu H. The cAMP phosphodiesterase Prune localizes to the mitochondrial matrix and promotes mtDNA replication by stabilizing TFAM. EMBO Rep 2015;16:520-7. [PMID: 25648146 DOI: 10.15252/embr.201439636] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
9 Stiban J, Farnum GA, Hovde SL, Kaguni LS. The N-terminal domain of the Drosophila mitochondrial replicative DNA helicase contains an iron-sulfur cluster and binds DNA. J Biol Chem 2014;289:24032-42. [PMID: 25023283 DOI: 10.1074/jbc.M114.587774] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
10 Sperl LE, Hagn F. NMR Structural and Biophysical Analysis of the Disease-Linked Inner Mitochondrial Membrane Protein MPV17. J Mol Biol 2021;433:167098. [PMID: 34116124 DOI: 10.1016/j.jmb.2021.167098] [Reference Citation Analysis]
11 Duncan AJ, Knight JA, Costello H, Conway GS, Rahman S. POLG mutations and age at menopause. Hum Reprod 2012;27:2243-4. [PMID: 22552686 DOI: 10.1093/humrep/des130] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
12 van Loon B, Samson LD. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB). DNA Repair (Amst) 2013;12:177-87. [PMID: 23290262 DOI: 10.1016/j.dnarep.2012.11.009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
13 Roos S, Lindgren U, Ehrstedt C, Moslemi A, Oldfors A. Mitochondrial DNA depletion in single fibers in a patient with novel TK2 mutations. Neuromuscular Disorders 2014;24:713-20. [DOI: 10.1016/j.nmd.2014.05.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
14 Zabalza R, Nurminen A, Kaguni LS, Garesse R, Gallardo ME, Bornstein B. Co-occurrence of four nucleotide changes associated with an adult mitochondrial ataxia phenotype. BMC Res Notes 2014;7:883. [PMID: 25488682 DOI: 10.1186/1756-0500-7-883] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
15 Rosado-Ruiz FA, So M, Kaguni LS. Purification and Comparative Assay of the Human Mitochondrial Replicative DNA Helicase. Methods Mol Biol 2016;1351:185-98. [PMID: 26530683 DOI: 10.1007/978-1-4939-3040-1_14] [Reference Citation Analysis]
16 Garone C, Gurgel-Giannetti J, Sanna-Cherchi S, Krishna S, Naini A, Quinzii CM, Hirano M. A Novel SUCLA2 Mutation Presenting as a Complex Childhood Movement Disorder. J Child Neurol 2017;32:246-50. [PMID: 27651038 DOI: 10.1177/0883073816666221] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
17 Rooney JP, Luz AL, González-Hunt CP, Bodhicharla R, Ryde IT, Anbalagan C, Meyer JN. Effects of 5'-fluoro-2-deoxyuridine on mitochondrial biology in Caenorhabditis elegans. Exp Gerontol 2014;56:69-76. [PMID: 24704715 DOI: 10.1016/j.exger.2014.03.021] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 3.5] [Reference Citation Analysis]
18 Wanrooij PH, Engqvist MKM, Forslund JME, Navarrete C, Nilsson AK, Sedman J, Wanrooij S, Clausen AR, Chabes A. Ribonucleotides incorporated by the yeast mitochondrial DNA polymerase are not repaired. Proc Natl Acad Sci U S A 2017;114:12466-71. [PMID: 29109257 DOI: 10.1073/pnas.1713085114] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
19 Brosh RM Jr. DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 2013;13:542-58. [PMID: 23842644 DOI: 10.1038/nrc3560] [Cited by in Crossref: 203] [Cited by in F6Publishing: 189] [Article Influence: 22.6] [Reference Citation Analysis]
20 Ferreira A, Serafim TL, Sardão VA, Cunha-oliveira T. Role of mtDNA-related mitoepigenetic phenomena in cancer. Eur J Clin Invest 2015;45:44-9. [DOI: 10.1111/eci.12359] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
21 Friedman Y, Hizi A, Avni D, Bakhanashvili M. Mitochondrial matrix-localized p53 participates in degradation of mitochondrial RNAs. Mitochondrion 2021;58:200-12. [PMID: 33775872 DOI: 10.1016/j.mito.2021.03.007] [Reference Citation Analysis]
22 Sen D, Patel G, Patel SS. Homologous DNA strand exchange activity of the human mitochondrial DNA helicase TWINKLE. Nucleic Acids Res 2016;44:4200-10. [PMID: 26887820 DOI: 10.1093/nar/gkw098] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
23 Chimploy K, Song S, Wheeler LJ, Mathews CK. Ribonucleotide reductase association with mammalian liver mitochondria. J Biol Chem 2013;288:13145-55. [PMID: 23504325 DOI: 10.1074/jbc.M113.461111] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
24 Fukunaga H. Mitochondrial DNA Copy Number and Developmental Origins of Health and Disease (DOHaD). Int J Mol Sci 2021;22:6634. [PMID: 34205712 DOI: 10.3390/ijms22126634] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Linkowska K, Jawień A, Marszałek A, Malyarchuk BA, Tońska K, Bartnik E, Skonieczna K, Grzybowski T. Mitochondrial DNA Polymerase γ Mutations and Their Implications in mtDNA Alterations in Colorectal Cancer. Ann Hum Genet. 2015; Apr 7. [Epub ahead of print]. [PMID: 25850945 DOI: 10.1111/ahg.12111] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
26 Nagappa M, Bindu PS, Taly AB, Sonam K, Shwetha C, Kumar R, Gayathri N, Srinivas-Bharath MM, Arvinda HR, Sinha S, Paramasivam A, Thangaraj K. Palatal Tremor in POLG-Associated Ataxia. Mov Disord Clin Pract 2015;2:318-20. [PMID: 30363534 DOI: 10.1002/mdc3.12195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
27 Al Khatib I, Shutt TE. Advances Towards Therapeutic Approaches for mtDNA Disease. Adv Exp Med Biol 2019;1158:217-46. [PMID: 31452143 DOI: 10.1007/978-981-13-8367-0_12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Arnold LH, Kunzelmann S, Webb MR, Taylor IA. A continuous enzyme-coupled assay for triphosphohydrolase activity of HIV-1 restriction factor SAMHD1. Antimicrob Agents Chemother 2015;59:186-92. [PMID: 25331707 DOI: 10.1128/AAC.03903-14] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
29 Mohamed HRH. Estimation of genomic instability and mitochondrial DNA damage induction by acute oral administration of calcium hydroxide normal- and nano- particles in mice. Toxicology Letters 2019;304:1-12. [DOI: 10.1016/j.toxlet.2018.12.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
30 Gonzalez-Hunt CP, Rooney JP, Ryde IT, Anbalagan C, Joglekar R, Meyer JN. PCR-Based Analysis of Mitochondrial DNA Copy Number, Mitochondrial DNA Damage, and Nuclear DNA Damage. Curr Protoc Toxicol 2016;67:20.11.1-20.11.25. [PMID: 26828332 DOI: 10.1002/0471140856.tx2011s67] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 6.3] [Reference Citation Analysis]
31 Georgiadou E, Rutter GA. Control by Ca2+ of mitochondrial structure and function in pancreatic β-cells. Cell Calcium 2020;91:102282. [PMID: 32961506 DOI: 10.1016/j.ceca.2020.102282] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
32 Hensen F, Cansiz S, Gerhold JM, Spelbrink JN. To be or not to be a nucleoid protein: A comparison of mass-spectrometry based approaches in the identification of potential mtDNA-nucleoid associated proteins. Biochimie 2014;100:219-26. [DOI: 10.1016/j.biochi.2013.09.017] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 5.8] [Reference Citation Analysis]
33 Finsterer J, G Kovacs G, Ahting U. Adult mitochondrial DNA depletion syndrome with mild manifestations. Neurol Int. 2013;5:28-30. [PMID: 23888212 DOI: 10.4081/ni.2013.e9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
34 Reyes A, Melchionda L, Nasca A, Carrara F, Lamantea E, Zanolini A, Lamperti C, Fang M, Zhang J, Ronchi D, Bonato S, Fagiolari G, Moggio M, Ghezzi D, Zeviani M. RNASEH1 Mutations Impair mtDNA Replication and Cause Adult-Onset Mitochondrial Encephalomyopathy. Am J Hum Genet 2015;97:186-93. [PMID: 26094573 DOI: 10.1016/j.ajhg.2015.05.013] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 9.1] [Reference Citation Analysis]
35 Giovarelli M, Zecchini S, Catarinella G, Moscheni C, Sartori P, Barbieri C, Roux-Biejat P, Napoli A, Vantaggiato C, Cervia D, Perrotta C, Clementi E, Latella L, De Palma C. Givinostat as metabolic enhancer reverting mitochondrial biogenesis deficit in Duchenne Muscular Dystrophy. Pharmacol Res 2021;170:105751. [PMID: 34197911 DOI: 10.1016/j.phrs.2021.105751] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Meyer JN, Leung MC, Rooney JP, Sendoel A, Hengartner MO, Kisby GE, Bess AS. Mitochondria as a target of environmental toxicants. Toxicol Sci 2013;134:1-17. [PMID: 23629515 DOI: 10.1093/toxsci/kft102] [Cited by in Crossref: 288] [Cited by in F6Publishing: 251] [Article Influence: 32.0] [Reference Citation Analysis]
37 Sun R, Wang L. Thymidine Kinase 2 Enzyme Kinetics Elucidate the Mechanism of Thymidine-Induced Mitochondrial DNA Depletion. Biochemistry 2014;53:6142-50. [DOI: 10.1021/bi5006877] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
38 Phillips NR, Simpkins JW, Roby RK. Mitochondrial DNA deletions in Alzheimer's brains: a review. Alzheimers Dement 2014;10:393-400. [PMID: 23850329 DOI: 10.1016/j.jalz.2013.04.508] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.4] [Reference Citation Analysis]
39 Fasullo M, Endres L. Nucleotide salvage deficiencies, DNA damage and neurodegeneration. Int J Mol Sci 2015;16:9431-49. [PMID: 25923076 DOI: 10.3390/ijms16059431] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 6.6] [Reference Citation Analysis]
40 Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, Berg-Alonso L, Kageyama Y, Serre V, Moore DG, Verschueren A, Rouzier C, Le Ber I, Augé G, Cochaud C, Lespinasse F, N'Guyen K, de Septenville A, Brice A, Yu-Wai-Man P, Sesaki H, Pouget J, Paquis-Flucklinger V. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 2014;137:2329-45. [PMID: 24934289 DOI: 10.1093/brain/awu138] [Cited by in Crossref: 266] [Cited by in F6Publishing: 247] [Article Influence: 33.3] [Reference Citation Analysis]
41 Lopez-Gomez C, Levy RJ, Sanchez-Quintero MJ, Juanola-Falgarona M, Barca E, Garcia-Diaz B, Tadesse S, Garone C, Hirano M. Deoxycytidine and Deoxythymidine Treatment for Thymidine Kinase 2 Deficiency. Ann Neurol 2017;81:641-52. [PMID: 28318037 DOI: 10.1002/ana.24922] [Cited by in Crossref: 63] [Cited by in F6Publishing: 46] [Article Influence: 12.6] [Reference Citation Analysis]
42 Uhler JP, Thörn C, Nicholls TJ, Matic S, Milenkovic D, Gustafsson CM, Falkenberg M. MGME1 processes flaps into ligatable nicks in concert with DNA polymerase γ during mtDNA replication. Nucleic Acids Res 2016;44:5861-71. [PMID: 27220468 DOI: 10.1093/nar/gkw468] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
43 Bendell JC, Patel MR, Infante JR, Kurkjian CD, Jones SF, Pant S, Burris HA 3rd, Moreno O, Esquibel V, Levin W, Moore KN. Phase 1, open-label, dose escalation, safety, and pharmacokinetics study of ME-344 as a single agent in patients with refractory solid tumors. Cancer 2015;121:1056-63. [PMID: 25411085 DOI: 10.1002/cncr.29155] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
44 Pinto M, Moraes CT. Mitochondrial genome changes and neurodegenerative diseases. Biochim Biophys Acta 2014;1842:1198-207. [PMID: 24252612 DOI: 10.1016/j.bbadis.2013.11.012] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 5.6] [Reference Citation Analysis]
45 Copeland WC, Longley MJ. Mitochondrial genome maintenance in health and disease. DNA Repair (Amst) 2014;19:190-8. [PMID: 24780559 DOI: 10.1016/j.dnarep.2014.03.010] [Cited by in Crossref: 88] [Cited by in F6Publishing: 75] [Article Influence: 11.0] [Reference Citation Analysis]
46 Zhuo M, Gorgun MF, Englander EW. Neurotoxicity of cytarabine (Ara-C) in dorsal root ganglion neurons originates from impediment of mtDNA synthesis and compromise of mitochondrial function. Free Radic Biol Med 2018;121:9-19. [PMID: 29698743 DOI: 10.1016/j.freeradbiomed.2018.04.570] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
47 Ronchi D, Di Fonzo A, Lin W, Bordoni A, Liu C, Fassone E, Pagliarani S, Rizzuti M, Zheng L, Filosto M, Ferrò MT, Ranieri M, Magri F, Peverelli L, Li H, Yuan YC, Corti S, Sciacco M, Moggio M, Bresolin N, Shen B, Comi GP. Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. Am J Hum Genet 2013;92:293-300. [PMID: 23352259 DOI: 10.1016/j.ajhg.2012.12.014] [Cited by in Crossref: 88] [Cited by in F6Publishing: 78] [Article Influence: 9.8] [Reference Citation Analysis]
48 Vasileiou PVS, Mourouzis I, Pantos C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int J Mol Sci 2017;18:E1821. [PMID: 28829360 DOI: 10.3390/ijms18081821] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
49 Sarig O, Goldsher D, Nousbeck J, Fuchs-Telem D, Cohen-Katsenelson K, Iancu TC, Manov I, Saada A, Sprecher E, Mandel H. Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3-methylglutaconic aciduria type IV with sensorineural deafness, encephalopathy and Leigh-like syndrome) caused by novel mutations in SERAC1. Am J Med Genet A 2013;161A:2204-15. [PMID: 23918762 DOI: 10.1002/ajmg.a.36059] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
50 Valencia CA, Wang X, Wang J, Peters A, Simmons JR, Moran MC, Mathur A, Husami A, Qian Y, Sheridan R, Bove KE, Witte D, Huang T, Miethke AG. Deep Sequencing Reveals Novel Genetic Variants in Children with Acute Liver Failure and Tissue Evidence of Impaired Energy Metabolism. PLoS One 2016;11:e0156738. [PMID: 27483465 DOI: 10.1371/journal.pone.0156738] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
51 Bakkaiova J, Arata K, Matsunobu M, Ono B, Aoki T, Lajdova D, Nebohacova M, Nosek J, Miyakawa I, Tomaska L. The strictly aerobic yeast Yarrowia lipolytica tolerates loss of a mitochondrial DNA-packaging protein. Eukaryot Cell 2014;13:1143-57. [PMID: 24972935 DOI: 10.1128/EC.00092-14] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 1.9] [Reference Citation Analysis]
52 Liyanage SU, Hurren R, Voisin V, Bridon G, Wang X, Xu C, MacLean N, Siriwardena TP, Gronda M, Yehudai D, Sriskanthadevan S, Avizonis D, Shamas-Din A, Minden MD, Bader GD, Laposa R, Schimmer AD. Leveraging increased cytoplasmic nucleoside kinase activity to target mtDNA and oxidative phosphorylation in AML. Blood 2017;129:2657-66. [PMID: 28283480 DOI: 10.1182/blood-2016-10-741207] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
53 Vital A, Vital C. Mitochondria and peripheral neuropathies. J Neuropathol Exp Neurol 2012;71:1036-46. [PMID: 23147504 DOI: 10.1097/NEN.0b013e3182764d47] [Cited by in Crossref: 30] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
54 Carelli V, Chan DC. Mitochondrial DNA: impacting central and peripheral nervous systems. Neuron 2014;84:1126-42. [PMID: 25521375 DOI: 10.1016/j.neuron.2014.11.022] [Cited by in Crossref: 67] [Cited by in F6Publishing: 65] [Article Influence: 9.6] [Reference Citation Analysis]
55 Suhasini AN, Brosh RM Jr. DNA helicases associated with genetic instability, cancer, and aging. Adv Exp Med Biol 2013;767:123-44. [PMID: 23161009 DOI: 10.1007/978-1-4614-5037-5_6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
56 Nissanka N, Moraes CT. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Rep 2020;21:e49612. [PMID: 32073748 DOI: 10.15252/embr.201949612] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
57 Formichi P, Radi E, Branca C, Battisti C, Brunetti J, Da Pozzo P, Giannini F, Dotti MT, Bracci L, Federico A. Oxidative stress-induced apoptosis in peripheral blood lymphocytes from patients with POLG-related disorders. J Neurol Sci 2016;368:359-68. [PMID: 27538665 DOI: 10.1016/j.jns.2016.07.047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
58 Nissanka N, Minczuk M, Moraes CT. Mechanisms of Mitochondrial DNA Deletion Formation. Trends Genet 2019;35:235-44. [PMID: 30691869 DOI: 10.1016/j.tig.2019.01.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
59 McInnes J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr Metab (Lond) 2013;10:63. [PMID: 24499129 DOI: 10.1186/1743-7075-10-63] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
60 Nissanka N, Bacman SR, Plastini MJ, Moraes CT. The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions. Nat Commun 2018;9:2491. [PMID: 29950568 DOI: 10.1038/s41467-018-04895-1] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 11.3] [Reference Citation Analysis]
61 Soengas MS. Mitophagy or how to control the Jekyll and Hyde embedded in mitochondrial metabolism: implications for melanoma progression and drug resistance. Pigment Cell Melanoma Res 2012;25:721-31. [DOI: 10.1111/pcmr.12021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
62 Pereira CV, Moraes CT. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy. Front Biosci (Landmark Ed) 2017;22:991-1010. [PMID: 27814659 DOI: 10.2741/4529] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
63 Uhler JP, Falkenberg M. Primer removal during mammalian mitochondrial DNA replication. DNA Repair (Amst) 2015;34:28-38. [PMID: 26303841 DOI: 10.1016/j.dnarep.2015.07.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
64 Oláhová M, Peter B, Szilagyi Z, Diaz-Maldonado H, Singh M, Sommerville EW, Blakely EL, Collier JJ, Hoberg E, Stránecký V, Hartmannová H, Bleyer AJ, McBride KL, Bowden SA, Korandová Z, Pecinová A, Ropers HH, Kahrizi K, Najmabadi H, Tarnopolsky MA, Brady LI, Weaver KN, Prada CE, Õunap K, Wojcik MH, Pajusalu S, Syeda SB, Pais L, Estrella EA, Bruels CC, Kunkel LM, Kang PB, Bonnen PE, Mráček T, Kmoch S, Gorman GS, Falkenberg M, Gustafsson CM, Taylor RW. POLRMT mutations impair mitochondrial transcription causing neurological disease. Nat Commun 2021;12:1135. [PMID: 33602924 DOI: 10.1038/s41467-021-21279-0] [Reference Citation Analysis]
65 Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull 2013;106:135-59. [PMID: 23704099 DOI: 10.1093/bmb/ldt017] [Cited by in Crossref: 196] [Cited by in F6Publishing: 171] [Article Influence: 21.8] [Reference Citation Analysis]
66 Poirier MC, Gibbons AT, Rugeles MT, Andre-Schmutz I, Blanche S. Fetal consequences of maternal antiretroviral nucleoside reverse transcriptase inhibitor use in human and nonhuman primate pregnancy. Curr Opin Pediatr 2015;27:233-9. [PMID: 25635584 DOI: 10.1097/MOP.0000000000000193] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
67 Gilberti M, Baruffini E, Donnini C, Dallabona C. Pathological alleles of MPV17 modeled in the yeast Saccharomyces cerevisiae orthologous gene SYM1 reveal their inability to take part in a high molecular weight complex. PLoS One 2018;13:e0205014. [PMID: 30273399 DOI: 10.1371/journal.pone.0205014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
68 Chaussenot A, Paquis-flucklinger V. An overview of neurological and neuromuscular signs in mitochondrial diseases. Revue Neurologique 2014;170:323-38. [DOI: 10.1016/j.neurol.2014.03.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
69 Vidoni S, Zanna C, Rugolo M, Sarzi E, Lenaers G. Why mitochondria must fuse to maintain their genome integrity. Antioxid Redox Signal 2013;19:379-88. [PMID: 23350575 DOI: 10.1089/ars.2012.4800] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.4] [Reference Citation Analysis]
70 Castegna A, Iacobazzi V, Infantino V. The mitochondrial side of epigenetics. Physiol Genomics 2015;47:299-307. [PMID: 26038395 DOI: 10.1152/physiolgenomics.00096.2014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 7.1] [Reference Citation Analysis]
71 Han S, Udeshi ND, Deerinck TJ, Svinkina T, Ellisman MH, Carr SA, Ting AY. Proximity Biotinylation as a Method for Mapping Proteins Associated with mtDNA in Living Cells. Cell Chem Biol 2017;24:404-14. [PMID: 28238724 DOI: 10.1016/j.chembiol.2017.02.002] [Cited by in Crossref: 68] [Cited by in F6Publishing: 60] [Article Influence: 13.6] [Reference Citation Analysis]
72 Guarino E, Salguero I, Kearsey SE. Cellular regulation of ribonucleotide reductase in eukaryotes. Semin Cell Dev Biol 2014;30:97-103. [PMID: 24704278 DOI: 10.1016/j.semcdb.2014.03.030] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 5.6] [Reference Citation Analysis]
73 Gaziev AI, Abdullaev S, Podlutsky A. Mitochondrial function and mitochondrial DNA maintenance with advancing age. Biogerontology 2014;15:417-38. [PMID: 25015781 DOI: 10.1007/s10522-014-9515-2] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 4.9] [Reference Citation Analysis]
74 Tervasmäki A, Mantere T, Hartikainen JM, Kauppila S, Lee HM, Koivuluoma S, Grip M, Karihtala P, Jukkola-Vuorinen A, Mannermaa A, Winqvist R, Pylkäs K. Rare missense mutations in RECQL and POLG associate with inherited predisposition to breast cancer. Int J Cancer 2018;142:2286-92. [PMID: 29341116 DOI: 10.1002/ijc.31259] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
75 Nicholls TJ, Zsurka G, Peeva V, Schöler S, Szczesny RJ, Cysewski D, Reyes A, Kornblum C, Sciacco M, Moggio M, Dziembowski A, Kunz WS, Minczuk M. Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease. Hum Mol Genet 2014;23:6147-62. [PMID: 24986917 DOI: 10.1093/hmg/ddu336] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
76 Frye RE, Rose S, Slattery J, MacFabe DF. Gastrointestinal dysfunction in autism spectrum disorder: the role of the mitochondria and the enteric microbiome. Microb Ecol Health Dis 2015;26:27458. [PMID: 25956238 DOI: 10.3402/mehd.v26.27458] [Cited by in Crossref: 25] [Cited by in F6Publishing: 49] [Article Influence: 3.6] [Reference Citation Analysis]
77 Weiher H, Pircher H, Jansen-Dürr P, Hegenbarth S, Knolle P, Grunau S, Vapola M, Hiltunen JK, Zwacka RM, Schmelzer E, Reumann K, Will H. A monoclonal antibody raised against bacterially expressed MPV17 sequences shows peroxisomal, endosomal and lysosomal localisation in U2OS cells. BMC Res Notes 2016;9:128. [PMID: 26921094 DOI: 10.1186/s13104-016-1939-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
78 Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505:335-343. [PMID: 24429632 DOI: 10.1038/nature12985] [Cited by in Crossref: 792] [Cited by in F6Publishing: 721] [Article Influence: 99.0] [Reference Citation Analysis]
79 Medeiros TC, Thomas RL, Ghillebert R, Graef M. Autophagy balances mtDNA synthesis and degradation by DNA polymerase POLG during starvation. J Cell Biol 2018;217:1601-11. [PMID: 29519802 DOI: 10.1083/jcb.201801168] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
80 Kaufman BA, Li C, Soleimanpour SA. Mitochondrial regulation of β-cell function: maintaining the momentum for insulin release. Mol Aspects Med 2015;42:91-104. [PMID: 25659350 DOI: 10.1016/j.mam.2015.01.004] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 6.3] [Reference Citation Analysis]
81 Suhasini AN, Brosh RM Jr. Disease-causing missense mutations in human DNA helicase disorders. Mutat Res 2013;752:138-52. [PMID: 23276657 DOI: 10.1016/j.mrrev.2012.12.004] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 4.2] [Reference Citation Analysis]
82 Van Houten B, Hunter SE, Meyer JN. Mitochondrial DNA damage induced autophagy, cell death, and disease. Front Biosci (Landmark Ed) 2016;21:42-54. [PMID: 26709760 DOI: 10.2741/4375] [Cited by in Crossref: 85] [Cited by in F6Publishing: 75] [Article Influence: 14.2] [Reference Citation Analysis]
83 Bharti SK, Sommers JA, Zhou J, Kaplan DL, Spelbrink JN, Mergny JL, Brosh RM Jr. DNA sequences proximal to human mitochondrial DNA deletion breakpoints prevalent in human disease form G-quadruplexes, a class of DNA structures inefficiently unwound by the mitochondrial replicative Twinkle helicase. J Biol Chem 2014;289:29975-93. [PMID: 25193669 DOI: 10.1074/jbc.M114.567073] [Cited by in Crossref: 72] [Cited by in F6Publishing: 46] [Article Influence: 9.0] [Reference Citation Analysis]
84 Ramakrishnan S, Yadav R, Adwani S, Mustare V, Kulkarni GB, Narayanappa G, Periyasamy G, Kumarasamy T. Vocal cord palsy in a case of chronic progressive external ophthalmoplegia. Ann Indian Acad Neurol 2015;18:481-3. [PMID: 26713034 DOI: 10.4103/0972-2327.165463] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
85 Yambire KF, Rostosky C, Watanabe T, Pacheu-Grau D, Torres-Odio S, Sanchez-Guerrero A, Senderovich O, Meyron-Holtz EG, Milosevic I, Frahm J, West AP, Raimundo N. Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. Elife 2019;8:e51031. [PMID: 31793879 DOI: 10.7554/eLife.51031] [Cited by in Crossref: 57] [Cited by in F6Publishing: 27] [Article Influence: 19.0] [Reference Citation Analysis]
86 DaRe JT, Vasta V, Penn J, Tran NT, Hahn SH. Targeted exome sequencing for mitochondrial disorders reveals high genetic heterogeneity. BMC Med Genet 2013;14:118. [PMID: 24215330 DOI: 10.1186/1471-2350-14-118] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 4.4] [Reference Citation Analysis]
87 Duguay BA, Smiley JR. Mitochondrial nucleases ENDOG and EXOG participate in mitochondrial DNA depletion initiated by herpes simplex virus 1 UL12.5. J Virol 2013;87:11787-97. [PMID: 23986585 DOI: 10.1128/JVI.02306-13] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
88 Freisinger P, Sperl W. Mitochondriale Erkrankungen im Kindes- und Jugendalter. Medizinische Genetik 2012;24:162-8. [DOI: 10.1007/s11825-012-0343-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
89 Moore TM, Zhou Z, Strumwasser AR, Cohn W, Lin AJ, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Hoang AN, Widjaja K, Abrishami AD, Charugundla S, Stiles L, Whitelegge JP, Turcotte LP, Wanagat J, Hevener AL. Age-induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge. Aging Cell 2020;19:e13166. [PMID: 33049094 DOI: 10.1111/acel.13166] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
90 Mazurova S, Magner M, Kucerova-Vidrova V, Vondrackova A, Stranecky V, Pristoupilova A, Zamecnik J, Hansikova H, Zeman J, Tesarova M, Honzik T. Thymidine kinase 2 and alanyl-tRNA synthetase 2 deficiencies cause lethal mitochondrial cardiomyopathy: case reports and review of the literature. Cardiol Young 2017;27:936-44. [PMID: 27839525 DOI: 10.1017/S1047951116001876] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
91 Fukuoh A, Cannino G, Gerards M, Buckley S, Kazancioglu S, Scialo F, Lihavainen E, Ribeiro A, Dufour E, Jacobs HT. Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase. Mol Syst Biol 2014;10:734. [PMID: 24952591 DOI: 10.15252/msb.20145117] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
92 Vuda M, Kamath A. Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences. Mitochondrion 2016;31:63-74. [PMID: 27771494 DOI: 10.1016/j.mito.2016.10.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
93 Rooney JP, Ryde IT, Sanders LH, Howlett EH, Colton MD, Germ KE, Mayer GD, Greenamyre JT, Meyer JN. PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol Biol 2015;1241:23-38. [PMID: 25308485 DOI: 10.1007/978-1-4939-1875-1_3] [Cited by in Crossref: 171] [Cited by in F6Publishing: 159] [Article Influence: 24.4] [Reference Citation Analysis]
94 Cotterill S. Diseases Associated with Mutation of Replication and Repair Proteins. Adv Exp Med Biol 2018;1076:215-34. [PMID: 29951822 DOI: 10.1007/978-981-13-0529-0_12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
95 Bouchereau J, Barrot SV, Dupré T, Moore SE, Cardas R, Capri Y, Gaignard P, Slama A, Delanoë C, Ogier de Baulny H, Seta N, Schiff M, Servais L. Abnormal Glycosylation Profile and High Alpha-Fetoprotein in a Patient with Twinkle Variants. JIMD Rep 2016;29:109-13. [PMID: 26920903 DOI: 10.1007/8904_2016_526] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
96 Menezes MR, Sweasy JB. Mouse models of DNA polymerases. Environ Mol Mutagen 2012;53:645-65. [DOI: 10.1002/em.21731] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
97 Burton RS, Barreto FS. A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities? Mol Ecol 2012;21:4942-57. [PMID: 22994153 DOI: 10.1111/mec.12006] [Cited by in Crossref: 195] [Cited by in F6Publishing: 162] [Article Influence: 19.5] [Reference Citation Analysis]
98 Chen R, Lin J, Hong J, Han D, Zhang AD, Lan R, Fu L, Wu Z, Lin J, Zhang W, Wang Z, Chen W, Chen C, Zhang H. Potential toxicity of quercetin: The repression of mitochondrial copy number via decreased POLG expression and excessive TFAM expression in irradiated murine bone marrow. Toxicol Rep 2014;1:450-8. [PMID: 28962259 DOI: 10.1016/j.toxrep.2014.07.014] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
99 Cámara Y, González-vioque E, Scarpelli M, Torres-torronteras J, Martí R. Feeding the deoxyribonucleoside salvage pathway to rescue mitochondrial DNA. Drug Discovery Today 2013;18:950-7. [DOI: 10.1016/j.drudis.2013.06.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
100 Miranda M, Bonekamp NA, Kühl I. Starting the engine of the powerhouse: mitochondrial transcription and beyond. Biol Chem 2022. [PMID: 35355496 DOI: 10.1515/hsz-2021-0416] [Reference Citation Analysis]
101 Demple B, Rao KS, Bohr VA. Indo-US workshop on base excision DNA repair, brain function and aging. Mech Ageing Dev 2012;133:v-vi. [PMID: 22579128 DOI: 10.1016/S0047-6374(12)00063-2] [Reference Citation Analysis]
102 Garone C, Garcia-Diaz B, Emmanuele V, Lopez LC, Tadesse S, Akman HO, Tanji K, Quinzii CM, Hirano M. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol Med 2014;6:1016-27. [PMID: 24968719 DOI: 10.15252/emmm.201404092] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 8.7] [Reference Citation Analysis]
103 Balogun K, Serghides L. Comparison of the Effects of Three Dual-Nucleos(t)ide Reverse Transcriptase Inhibitor Backbones on Placenta Mitochondria Toxicity and Oxidative Stress Using a Mouse Pregnancy Model. Pharmaceutics 2022;14:1063. [DOI: 10.3390/pharmaceutics14051063] [Reference Citation Analysis]
104 Krishnan S, Paredes JA, Zhou X, Kuiper RV, Hultenby K, Curbo S, Karlsson A. Long term expression of Drosophila melanogaster nucleoside kinase in thymidine kinase 2-deficient mice with no lethal effects caused by nucleotide pool imbalances. J Biol Chem 2014;289:32835-44. [PMID: 25296759 DOI: 10.1074/jbc.M114.588921] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
105 Khan I, Crouch JD, Bharti SK, Sommers JA, Carney SM, Yakubovskaya E, Garcia-Diaz M, Trakselis MA, Brosh RM Jr. Biochemical Characterization of the Human Mitochondrial Replicative Twinkle Helicase: SUBSTRATE SPECIFICITY, DNA BRANCH MIGRATION, AND ABILITY TO OVERCOME BLOCKADES TO DNA UNWINDING. J Biol Chem 2016;291:14324-39. [PMID: 27226550 DOI: 10.1074/jbc.M115.712026] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
106 Lee WT, St John J. The control of mitochondrial DNA replication during development and tumorigenesis. Ann N Y Acad Sci 2015;1350:95-106. [PMID: 26335356 DOI: 10.1111/nyas.12873] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
107 Bindoff LA, Engelsen BA. Mitochondrial diseases and epilepsy. Epilepsia 2012;53 Suppl 4:92-7. [PMID: 22946726 DOI: 10.1111/j.1528-1167.2012.03618.x] [Cited by in Crossref: 63] [Cited by in F6Publishing: 50] [Article Influence: 6.3] [Reference Citation Analysis]
108 Renaldo F, Amati-Bonneau P, Slama A, Romana C, Forin V, Doummar D, Barnerias C, Bursztyn J, Mayer M, Khouri N, Billette de Villemeur T, Burglen L, Reynier P, Bernabe Gelot A, Rodriguez D. MFN2, a new gene responsible for mitochondrial DNA depletion. Brain 2012;135:e223, 1-4; author reply e224, 1-3. [PMID: 22556188 DOI: 10.1093/brain/aws111] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]