BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Al Faraj A, Shaik AS, Al Sayed B, Halwani R, Al Jammaz I. Specific targeting and noninvasive imaging of breast cancer stem cells using single-walled carbon nanotubes as novel multimodality nanoprobes. Nanomedicine (Lond) 2016;11:31-46. [PMID: 26673059 DOI: 10.2217/nnm.15.182] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 Marcu LG, Moghaddasi L, Bezak E. Cannot Target What Cannot Be Seen: Molecular Imaging of Cancer Stem Cells. Int J Mol Sci 2023;24. [PMID: 36675033 DOI: 10.3390/ijms24021524] [Reference Citation Analysis]
2 González-méndez I, Sorroza-martínez K, Ruiu A, Rivera E. Carbon nanotubes for anticancer therapy: new trends and innovations. Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery 2023. [DOI: 10.1016/b978-0-323-85199-2.00005-4] [Reference Citation Analysis]
3 Mondal J, An JM, Surwase SS, Chakraborty K, Sutradhar SC, Hwang J, Lee J, Lee Y. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. Biosensors 2022;12:731. [DOI: 10.3390/bios12090731] [Reference Citation Analysis]
4 Singh R, Deshmukh R. Carbon nanotube as an emerging theranostic tool for oncology. Journal of Drug Delivery Science and Technology 2022;74:103586. [DOI: 10.1016/j.jddst.2022.103586] [Reference Citation Analysis]
5 Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. Nanomaterials 2022;12:1414. [DOI: 10.3390/nano12091414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Bura C, Mocan T, Grapa C, Mocan L. Carbon Nanotubes-Based Assays for Cancer Detection and Screening. Pharmaceutics 2022;14:781. [DOI: 10.3390/pharmaceutics14040781] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
7 Bhavana V, Chary PS, Rajana N, Mehra NK. Nanomedicine for targeting breast cancer stem cells. Targeted Nanomedicine for Breast Cancer Therapy 2022. [DOI: 10.1016/b978-0-12-824476-0.00006-1] [Reference Citation Analysis]
8 Dou K, Feng W, Fan C, Cao Y, Xiang Y, Liu Z. Flexible Designing Strategy to Construct Activatable NIR-II Fluorescent Probes with Emission Maxima beyond 1200 nm. Anal Chem 2021;93:4006-14. [DOI: 10.1021/acs.analchem.0c04990] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
9 Rai A, Noor S, Ahmad SI, Alajmi MF, Hussain A, Abbas H, Hasan GM. Recent Advances and Implication of Bioengineered Nanomaterials in Cancer Theranostics. Medicina (Kaunas) 2021;57:91. [PMID: 33494239 DOI: 10.3390/medicina57020091] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
10 Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020;173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
11 Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells 2020;9:E1896. [PMID: 32823711 DOI: 10.3390/cells9081896] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
12 Jariyal H, Gupta C, Bhat VS, Wagh JR, Srivastava A. Advancements in Cancer Stem Cell Isolation and Characterization. Stem Cell Rev Rep 2019;15:755-73. [PMID: 31863337 DOI: 10.1007/s12015-019-09912-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
13 Ghaffari H, Atashzar MR, Abdollahi H. Molecular imaging in tracking cancer stem cells: A review. Med J Islam Repub Iran 2020;34:90. [PMID: 33306061 DOI: 10.34171/mjiri.34.90] [Reference Citation Analysis]
14 Liu J, Ma X, Lingwang. Modulating effect of graphine oxide loaded hesperidin nanocomposite on the 1,2-dimethylhydrazine provoked colon carcinogenesis in rats via inhibiting the iNOS and COX-2 pathways. Arabian Journal of Chemistry 2020;13:6708-6723. [DOI: 10.1016/j.arabjc.2020.06.025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
15 Sevic I, Spinelli FM, Vitale DL, Icardi A, Romano L, Brandone A, Giannoni P, Cristina C, Bolontrade MF, Alaniz L. Hyaluronan Metabolism is Associated with DNA Repair Genes in Breast and Colorectal Cancer. Screening of Potential Progression Markers Using qPCR. Biomedicines 2020;8:E183. [PMID: 32610620 DOI: 10.3390/biomedicines8070183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
16 Cirillo G, Peitzsch C, Vittorio O, Curcio M, Farfalla A, Voli F, Dubrovska A, Iemma F, Kavallaris M, Hampel S. When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Med Chem 2019;11:2205-31. [PMID: 31538523 DOI: 10.4155/fmc-2018-0540] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
17 Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020;12:E524. [PMID: 32521684 DOI: 10.3390/pharmaceutics12060524] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
18 Wang S, Zhu X, Han M, Hao F, Lu W, Zhou T. Mechanistic Pharmacokinetic/Pharmacodynamic Model of Sunitinib and Dopamine in MCF-7/Adr Xenografts: Linking Cellular Heterogeneity to Tumour Burden. AAPS J 2020;22:45. [PMID: 32043246 DOI: 10.1208/s12248-020-0428-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Chen C, Tian R, Zeng Y, Chu C, Liu G. Activatable Fluorescence Probes for “Turn-On” and Ratiometric Biosensing and Bioimaging: From NIR-I to NIR-II. Bioconjugate Chem 2020;31:276-92. [DOI: 10.1021/acs.bioconjchem.9b00734] [Cited by in Crossref: 86] [Cited by in F6Publishing: 91] [Article Influence: 28.7] [Reference Citation Analysis]
20 Gao Y, Tang M, Leung E, Svirskis D, Shelling A, Wu Z. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Adv 2020;10:19089-105. [DOI: 10.1039/d0ra02801k] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
21 Sevic I, Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional de la Pcia. de Bs. As. Centro de Investigaciones y Transferencia del Noroeste de la Pcia. de Bs. As. (CIT NOBA, UNNOBA-CONICET), Junín, Bs. As., Argentina, Spinelli FM, Cantero MJ, Reszegi A, Kovalszky I, García MG, Alaniz L, Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional de la Pcia. de Bs. As. Centro de Investigaciones y Transferencia del Noroeste de la Pcia. de Bs. As. (CIT NOBA, UNNOBA-CONICET), Junín, Bs. As., Argentina, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET, Universidad Austral, Derqui-Pilar, Argentina, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET, Universidad Austral, Derqui-Pilar, Argentina, Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional de la Pcia. de Bs. As. Centro de Investigaciones y Transferencia del Noroeste de la Pcia. de Bs. As. (CIT NOBA, UNNOBA-CONICET), Junín, Bs. As., Argentina. The Role of the Tumor Microenvironment in the Development and Progression of Hepatocellular Carcinoma. Hepatocellular Carcinoma 2019. [DOI: 10.15586/hepatocellularcarcinoma.2019.ch2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
22 Park S, Kim T, Jo D, Jung JS, Jo G, Park Y, Kang ES, Kim YH, Kim J, Kim K, Hyun H. Bioengineered Short Carbon Nanotubes as Tumor-Targeted Carriers for Biomedical Imaging. Macromol Res 2019;27:833-8. [DOI: 10.1007/s13233-019-7141-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
23 Krasteva N, Keremidarska-Markova M, Hristova-Panusheva K, Andreeva T, Speranza G, Wang D, Draganova-Filipova M, Miloshev G, Georgieva M. Aminated Graphene Oxide as a Potential New Therapy for Colorectal Cancer. Oxid Med Cell Longev 2019;2019:3738980. [PMID: 31015889 DOI: 10.1155/2019/3738980] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
24 Turdo A, Veschi V, Gaggianesi M, Chinnici A, Bianca P, Todaro M, Stassi G. Meeting the Challenge of Targeting Cancer Stem Cells. Front Cell Dev Biol. 2019;7:16. [PMID: 30834247 DOI: 10.3389/fcell.2019.00016] [Cited by in Crossref: 80] [Cited by in F6Publishing: 85] [Article Influence: 20.0] [Reference Citation Analysis]
25 Shaik AS, Shaik AP, Bammidi VK, Al Faraj A. Effect of polyethylene glycol surface charge functionalization of SWCNT on the in vitro and in vivo nanotoxicity and biodistribution monitored noninvasively using MRI. Toxicol Mech Methods 2019;29:233-43. [PMID: 30480460 DOI: 10.1080/15376516.2018.1540674] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
26 Jin T. Critical Review—Recent Progress in NIR Fluorophores Emitting over 1000 nm for Bioimaging. ECS J Solid State Sci Technol 2019;8:R9-R13. [DOI: 10.1149/2.0111901jss] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
27 Patel KD, Singh RK, Kim H. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horiz 2019;6:434-69. [DOI: 10.1039/c8mh00966j] [Cited by in Crossref: 173] [Cited by in F6Publishing: 179] [Article Influence: 43.3] [Reference Citation Analysis]
28 Zhang P, Zhang M, Geng J. Carbon-Based Nanomedicine. Nanomedicine in Brain Diseases 2019. [DOI: 10.1007/978-981-13-8731-9_8] [Reference Citation Analysis]
29 Sun Y, Kim HS, Kang S, Piao YJ, Jon S, Moon WK. Magnetic Resonance Imaging-Guided Drug Delivery to Breast Cancer Stem-Like Cells. Adv Healthc Mater 2018;7:e1800266. [PMID: 30146770 DOI: 10.1002/adhm.201800266] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
30 Zaibaq NG, Moghaddam SE, Wilson LJ. Imaging and Treating Cancer with Carbon Nanotube Technology. Nanooncology 2018. [DOI: 10.1007/978-3-319-89878-0_5] [Reference Citation Analysis]
31 Zhou Q, Zhang L, Wu H. Nanomaterials for cancer therapies. Nanotechnology Reviews 2017;6:473-96. [DOI: 10.1515/ntrev-2016-0102] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 5.8] [Reference Citation Analysis]
32 Sheikhpour M, Golbabaie A, Kasaeian A. Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment. Materials Science and Engineering: C 2017;76:1289-304. [DOI: 10.1016/j.msec.2017.02.132] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 8.5] [Reference Citation Analysis]
33 Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Suciu S, Puia C, Zdrehus C, Iancu C, Mocan L. Carbon nanotubes as anti-bacterial agents. Cell Mol Life Sci 2017;74:3467-79. [DOI: 10.1007/s00018-017-2532-y] [Cited by in Crossref: 66] [Cited by in F6Publishing: 50] [Article Influence: 11.0] [Reference Citation Analysis]
34 Sanginario A, Miccoli B, Demarchi D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. Biosensors (Basel) 2017;7:E9. [PMID: 28212271 DOI: 10.3390/bios7010009] [Cited by in Crossref: 77] [Cited by in F6Publishing: 80] [Article Influence: 12.8] [Reference Citation Analysis]
35 Qin W, Huang G, Chen Z, Zhang Y. Nanomaterials in Targeting Cancer Stem Cells for Cancer Therapy. Front Pharmacol 2017;8:1. [PMID: 28149278 DOI: 10.3389/fphar.2017.00001] [Cited by in Crossref: 40] [Cited by in F6Publishing: 50] [Article Influence: 6.7] [Reference Citation Analysis]
36 Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci 2017;5:901-52. [DOI: 10.1039/c7bm00008a] [Cited by in Crossref: 134] [Cited by in F6Publishing: 143] [Article Influence: 22.3] [Reference Citation Analysis]
37 Pan J, Li F, Choi JH. Single-walled carbon nanotubes as optical probes for bio-sensing and imaging. J Mater Chem B 2017;5:6511-22. [DOI: 10.1039/c7tb00748e] [Cited by in Crossref: 74] [Cited by in F6Publishing: 76] [Article Influence: 12.3] [Reference Citation Analysis]
38 Halwani R, Sultana Shaik A, Ratemi E, Afzal S, Kenana R, Al-Muhsen S, Al Faraj A. A novel anti-IL4Rα nanoparticle efficiently controls lung inflammation during asthma. Exp Mol Med 2016;48:e262. [PMID: 27713399 DOI: 10.1038/emm.2016.89] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
39 Hernández-rivera M, Zaibaq NG, Wilson LJ. Toward carbon nanotube-based imaging agents for the clinic. Biomaterials 2016;101:229-40. [DOI: 10.1016/j.biomaterials.2016.05.045] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
40 Urooj S, Singh SP, Pal NS, Lay-ekuakille A. Carbon-Based Nanomaterials in Biomedical Applications. 2016 Nanotechnology for Instrumentation and Measurement (NANOfIM) 2016. [DOI: 10.1109/nanofim.2016.8521437] [Reference Citation Analysis]
41 Shaik AP, Shaik AS, Majwal AA, Faraj AA. Blocking Interleukin-4 Receptor α Using Polyethylene Glycol Functionalized Superparamagnetic Iron Oxide Nanocarriers to Inhibit Breast Cancer Cell Proliferation. Cancer Res Treat 2017;49:322-9. [PMID: 27456946 DOI: 10.4143/crt.2016.091] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
42 Al Faraj A. SWCNTs as novel theranostic nanocarriers for cancer diagnosis and therapy: towards safe translation to the clinics. Nanomedicine 2016;11:1431-45. [DOI: 10.2217/nnm-2016-0065] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
43 Wang C, Li Y, Chen B, Zou M. In vivo pharmacokinetics, biodistribution and the anti-tumor effect of cyclic RGD-modified doxorubicin-loaded polymers in tumor-bearing mice. Colloids Surf B Biointerfaces 2016;146:31-8. [PMID: 27244048 DOI: 10.1016/j.colsurfb.2016.05.054] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
44 Al Faraj A, Shaik AS, Ratemi E, Halwani R. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J Control Release 2016;225:240-51. [PMID: 26827662 DOI: 10.1016/j.jconrel.2016.01.053] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 7.4] [Reference Citation Analysis]