BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pietersz GA, Wang X, Yap ML, Lim B, Peter K. Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine (Lond) 2017;12:1873-89. [PMID: 28703636 DOI: 10.2217/nnm-2017-0043] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Secchi V, Monguzzi A, Villa I. Design Principles of Hybrid Nanomaterials for Radiotherapy Enhanced by Photodynamic Therapy. Int J Mol Sci 2022;23:8736. [PMID: 35955867 DOI: 10.3390/ijms23158736] [Reference Citation Analysis]
2 Ma L, Ouyang H, Su A, Zhang Y, Pang D, Zhang T, Sun R, Wang W, Xie Z, Lv D. AbSE Workflow: Rapid Identification of the Coding Sequence and Linear Epitope of the Monoclonal Antibody at the Single-cell Level. ACS Synth Biol 2022;11:1856-64. [PMID: 35503752 DOI: 10.1021/acssynbio.2c00018] [Reference Citation Analysis]
3 Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. Small Methods 2022;6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
4 Tan J, Ding B, Teng B, Ma P, Lin J. Understanding Structure–Function Relationships of Nanoadjuvants for Enhanced Cancer Vaccine Efficacy. Adv Funct Materials 2022;32:2111670. [DOI: 10.1002/adfm.202111670] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Wang J, Yang J, Kopeček J. Nanomedicines in B cell-targeting therapies. Acta Biomater 2022;137:1-19. [PMID: 34687954 DOI: 10.1016/j.actbio.2021.10.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
6 Drozdov AS, Nikitin PI, Rozenberg JM. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. Int J Mol Sci 2021;22:13011. [PMID: 34884816 DOI: 10.3390/ijms222313011] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
7 Dang MN, Hoover EC, Scully MA, Sterin EH, Day ES. Antibody Nanocarriers for Cancer Management. Curr Opin Biomed Eng 2021;19:100295. [PMID: 34423177 DOI: 10.1016/j.cobme.2021.100295] [Reference Citation Analysis]
8 Zia A, Wu Y, Nguyen T, Wang X, Peter K, Ta HT. The choice of targets and ligands for site-specific delivery of nanomedicine to atherosclerosis. Cardiovasc Res 2020;116:2055-68. [PMID: 32077918 DOI: 10.1093/cvr/cvaa047] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
9 Alves ACS, Bruinsmann FA, Guterres SS, Pohlmann AR. Organic Nanocarriers for Bevacizumab Delivery: An Overview of Development, Characterization and Applications. Molecules 2021;26:4127. [PMID: 34299401 DOI: 10.3390/molecules26144127] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
10 Refaat A, del Rosal B, Palasubramaniam J, Pietersz G, Wang X, Peter K, Moulton SE. Smart Delivery of Plasminogen Activators for Efficient Thrombolysis; Recent Trends and Future Perspectives. Adv Therap 2021;4:2100047. [DOI: 10.1002/adtp.202100047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Andreana I, Repellin M, Carton F, Kryza D, Briançon S, Chazaud B, Mounier R, Arpicco S, Malatesta M, Stella B, Lollo G. Nanomedicine for Gene Delivery and Drug Repurposing in the Treatment of Muscular Dystrophies. Pharmaceutics 2021;13:278. [PMID: 33669654 DOI: 10.3390/pharmaceutics13020278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
12 Grigoletto A, Tedeschini T, Canato E, Pasut G. The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1689. [PMID: 33314717 DOI: 10.1002/wnan.1689] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
13 Jain A, Trindade GF, Hicks JM, Potts JC, Rahman R, Hague RJM, Amabilino DB, Pérez-García L, Rawson FJ. Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. J Colloid Interface Sci 2021;587:150-61. [PMID: 33360888 DOI: 10.1016/j.jcis.2020.12.025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
14 Zhang W, Liu S, Han D, He Z. Engineered nanoparticle-induced epigenetic changes: An important consideration in nanomedicine. Acta Biomater 2020;117:93-107. [PMID: 32980543 DOI: 10.1016/j.actbio.2020.09.034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Hernández-Camarero P, Amezcua-Hernández V, Jiménez G, García MA, Marchal JA, Perán M. Clinical failure of nanoparticles in cancer: mimicking nature's solutions. Nanomedicine (Lond) 2020;15:2311-24. [PMID: 32969312 DOI: 10.2217/nnm-2020-0234] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
16 Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. Int J Mol Sci 2020;21:E6324. [PMID: 32878291 DOI: 10.3390/ijms21176324] [Cited by in Crossref: 5] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
17 Xiang Z, Jiang G, Fan D, Tian J, Hu Z, Fang Q. Drug-internalized bacterial swimmers for magnetically manipulable tumor-targeted drug delivery. Nanoscale 2020;12:13513-22. [PMID: 32555818 DOI: 10.1039/d0nr01892a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020;12:E510. [PMID: 32503171 DOI: 10.3390/pharmaceutics12060510] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
19 Han SJ, Williams RM, D'Agati V, Jaimes EA, Heller DA, Lee HT. Selective nanoparticle-mediated targeting of renal tubular Toll-like receptor 9 attenuates ischemic acute kidney injury. Kidney Int 2020;98:76-87. [PMID: 32386967 DOI: 10.1016/j.kint.2020.01.036] [Cited by in Crossref: 13] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
20 Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020;320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Cited by in Crossref: 47] [Cited by in F6Publishing: 74] [Article Influence: 23.5] [Reference Citation Analysis]
21 Akbarzadeh Khiavi M, Safary A, Barar J, Ajoolabady A, Somi MH, Omidi Y. Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer. Cell Mol Life Sci 2020;77:997-1019. [DOI: 10.1007/s00018-019-03305-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
22 Le Q, Nguyen V, Park S. Recent advances in the engineering and application of streptavidin-like molecules. Appl Microbiol Biotechnol 2019;103:7355-65. [DOI: 10.1007/s00253-019-10036-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
23 Farahavar G, Abolmaali SS, Gholijani N, Nejatollahi F. Antibody-guided nanomedicines as novel breakthrough therapeutic, diagnostic and theranostic tools. Biomater Sci 2019;7:4000-16. [PMID: 31355391 DOI: 10.1039/c9bm00931k] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
24 Nogueira JCF, Greene MK, Richards DA, Furby AO, Steven J, Porter A, Barelle C, Scott CJ, Chudasama V. Oriented attachment of VNAR proteins, via site-selective modification, on PLGA-PEG nanoparticles enhances nanoconjugate performance. Chem Commun (Camb) 2019;55:7671-4. [PMID: 31204425 DOI: 10.1039/c9cc02655j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
25 Akbarzadeh Khiavi M, Safary A, Somi MH. Recent advances in targeted therapy of colorectal cancer: impacts of monoclonal antibodies nanoconjugates. Bioimpacts 2019;9:123-7. [PMID: 31508327 DOI: 10.15171/bi.2019.16] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
26 Fogaça RL, Alvarenga LM, Woiski TD, Becker-finco A, Teixeira KN, Silva SK, de Moraes RN, Noronha LD, Noiray M, de Figueiredo BC, Billiald P, Moura JD. Biomolecular engineering of antidehydroepiandrosterone antibodies: a new perspective in cancer diagnosis and treatment using single-chain antibody variable fragment. Nanomedicine 2019;14:689-705. [DOI: 10.2217/nnm-2018-0230] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
27 Yap ML, McFadyen JD, Wang X, Ziegler M, Chen YC, Willcox A, Nowell CJ, Scott AM, Sloan EK, Hogarth PM, Pietersz GA, Peter K. Activated platelets in the tumor microenvironment for targeting of antibody-drug conjugates to tumors and metastases. Theranostics 2019;9:1154-69. [PMID: 30867822 DOI: 10.7150/thno.29146] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
28 Kutova OM, Guryev EL, Sokolova EA, Alzeibak R, Balalaeva IV. Targeted Delivery to Tumors: Multidirectional Strategies to Improve Treatment Efficiency. Cancers (Basel) 2019;11:E68. [PMID: 30634580 DOI: 10.3390/cancers11010068] [Cited by in Crossref: 42] [Cited by in F6Publishing: 50] [Article Influence: 14.0] [Reference Citation Analysis]
29 Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in "smart" delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 2018;13:4727-45. [PMID: 30154657 DOI: 10.2147/IJN.S168053] [Cited by in Crossref: 79] [Cited by in F6Publishing: 92] [Article Influence: 19.8] [Reference Citation Analysis]
30 Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018;130:90-112. [PMID: 30149885 DOI: 10.1016/j.addr.2018.06.023] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
31 Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S, Yaghoobi H, Yarian F, Arezumand R, Ranjbari J, Mokhtarzadeh A, de la Guardia M. Targeted cancer therapy through antibody fragments-decorated nanomedicines. Journal of Controlled Release 2017;268:323-34. [DOI: 10.1016/j.jconrel.2017.10.036] [Cited by in Crossref: 74] [Cited by in F6Publishing: 76] [Article Influence: 14.8] [Reference Citation Analysis]
32 Yap ML, Wang X, Pietersz GA, Peter K. Mesoscale Nanoparticles: An Unexpected Means for Selective Therapeutic Targeting of Kidney Diseases! Hypertension 2018;71:61-3. [PMID: 29133359 DOI: 10.1161/HYPERTENSIONAHA.117.09944] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]