BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: O'Brien MK, Shawen N, Mummidisetty CK, Kaur S, Bo X, Poellabauer C, Kording K, Jayaraman A. Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting. J Med Internet Res 2017;19:e184. [PMID: 28546137 DOI: 10.2196/jmir.7385] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Pohl J, Ryser A, Veerbeek JM, Verheyden G, Vogt JE, Luft AR, Easthope CA. Accuracy of gait and posture classification using movement sensors in individuals with mobility impairment after stroke. Front Physiol 2022;13:933987. [DOI: 10.3389/fphys.2022.933987] [Reference Citation Analysis]
2 Celik Y, Aslan M, Sabanci K, Stuart S, Woo W, Godfrey A. Making good use of inertial data: Towards better identification of free-living mobility recognition. Gait & Posture 2022;97:S309-10. [DOI: 10.1016/j.gaitpost.2022.07.184] [Reference Citation Analysis]
3 Botonis OK, Harari Y, Embry KR, Mummidisetty CK, Riopelle D, Giffhorn M, Albert MV, Heike V, Jayaraman A. Wearable airbag technology and machine learned models to mitigate falls after stroke. J Neuroeng Rehabil 2022;19:60. [PMID: 35715823 DOI: 10.1186/s12984-022-01040-4] [Reference Citation Analysis]
4 Bhatia B, Arinde O, Tang Z, Feng J, Lawson S. Visualization and Qualitative Analysis of Rehabilitation Exercises Based on a Mobile App. 2022 IEEE 10th International Conference on Healthcare Informatics (ICHI) 2022. [DOI: 10.1109/ichi54592.2022.00022] [Reference Citation Analysis]
5 Kulkarni P, Kirkham R, McNaney R. Opportunities for Smartphone Sensing in E-Health Research: A Narrative Review. Sensors (Basel) 2022;22:3893. [PMID: 35632301 DOI: 10.3390/s22103893] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 El Marhraoui Y, Amroun H, Boukallel M, Anastassova M, Lamy S, Bouilland S, Ammi M. Foot-to-Ground Phases Detection: A Comparison of Data Representation Formatting Methods with Respect to Adaption of Deep Learning Architectures. Computers 2022;11:58. [DOI: 10.3390/computers11050058] [Reference Citation Analysis]
7 Suri A, VanSwearingen J, Dunlap P, Redfern MS, Rosso AL, Sejdić E. Facilitators and barriers to real-life mobility in community-dwelling older adults: a narrative review of accelerometry- and global positioning system-based studies. Aging Clin Exp Res 2022. [PMID: 35275373 DOI: 10.1007/s40520-022-02096-x] [Reference Citation Analysis]
8 Veerubhotla A, Ehrenberg N, Ibironke O, Pilkar R. Accuracy comparison of machine learning algorithms at various wear-locations for activity identification post stroke: A pilot analysis. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2021. [DOI: 10.1109/embc46164.2021.9630745] [Reference Citation Analysis]
9 Li Q, Liu Y, Zhu J, Chen Z, Liu L, Yang S, Zhu G, Zhu B, Li J, Jin R, Tao J, Chen L. Upper-Limb Motion Recognition Based on Hybrid Feature Selection: Algorithm Development and Validation. JMIR Mhealth Uhealth 2021;9:e24402. [PMID: 34473067 DOI: 10.2196/24402] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Lonini L, Shawen N, Hoppe-Ludwig S, Deems-Dluhy S, Mummidisetty CK, Eisenberg Y, Jayaraman A. Combining Accelerometer and GPS Features to Evaluate Community Mobility in Knee Ankle Foot Orthoses (KAFO) Users. IEEE Trans Neural Syst Rehabil Eng 2021;29:1386-93. [PMID: 34252030 DOI: 10.1109/TNSRE.2021.3096434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Luvizutto GJ, Silva GF, Nascimento MR, Sousa Santos KC, Appelt PA, de Moura Neto E, de Souza JT, Wincker FC, Miranda LA, Hamamoto Filho PT, de Souza LAPS, Simões RP, de Oliveira Vidal EI, Bazan R. Use of artificial intelligence as an instrument of evaluation after stroke: a scoping review based on international classification of functioning, disability and health concept. Top Stroke Rehabil 2021;:1-16. [PMID: 34115576 DOI: 10.1080/10749357.2021.1926149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Wang L, Sun J, Pan T, Ye Y, He W, Yang K. Personalized Human Activity Recognition using Hypergraph Learning with Fusion Features. 2021 IEEE 4th International Conference on Electronics Technology (ICET) 2021. [DOI: 10.1109/icet51757.2021.9451065] [Reference Citation Analysis]
13 Xiao T, Albert MV. Big Data in Medical AI: How Larger Data Sets Lead to Robust, Automated Learning for Medicine. Advances in Neuroethics 2021. [DOI: 10.1007/978-3-030-74188-4_2] [Reference Citation Analysis]
14 De Nardin L, Rodrigues KRH, Zimmermann LC, Orlandi BDM, da Graça C. Pimentel M. Recognition of Human Activities via Wearable Sensors. Proceedings of the Brazilian Symposium on Multimedia and the Web 2020. [DOI: 10.1145/3428658.3431086] [Reference Citation Analysis]
15 Rast FM, Labruyère R. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. J Neuroeng Rehabil 2020;17:148. [PMID: 33148315 DOI: 10.1186/s12984-020-00779-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
16 Xiong X, Wei Y. The Analysis and Predication of Energy Use in Smart Homes Based on Machine Learning. 2020 International Conference on Computing and Data Science (CDS) 2020. [DOI: 10.1109/cds49703.2020.00080] [Reference Citation Analysis]
17 Pradeepa S, Manjula KR, Vimal S, Khan MS, Chilamkurti N, Luhach AK. DRFS: Detecting Risk Factor of Stroke Disease from Social Media Using Machine Learning Techniques. Neural Process Lett. [DOI: 10.1007/s11063-020-10279-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
18 Negrini F, Gasperini G, Guanziroli E, Vitale JA, Banfi G, Molteni F. Using an Accelerometer-Based Step Counter in Post-Stroke Patients: Validation of a Low-Cost Tool. Int J Environ Res Public Health 2020;17:E3177. [PMID: 32370210 DOI: 10.3390/ijerph17093177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Shawen N, O'Brien MK, Venkatesan S, Lonini L, Simuni T, Hamilton JL, Ghaffari R, Rogers JA, Jayaraman A. Role of data measurement characteristics in the accurate detection of Parkinson's disease symptoms using wearable sensors. J Neuroeng Rehabil 2020;17:52. [PMID: 32312287 DOI: 10.1186/s12984-020-00684-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
20 Albert MV, Sugianto A, Nickele K, Zavos P, Sindu P, Ali M, Kwon S. Hidden Markov model-based activity recognition for toddlers. Physiol Meas 2020;41:025003. [PMID: 32142480 DOI: 10.1088/1361-6579/ab6ebb] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
21 Liao Y, Vakanski A, Xian M, Paul D, Baker R. A review of computational approaches for evaluation of rehabilitation exercises. Comput Biol Med 2020;119:103687. [PMID: 32339122 DOI: 10.1016/j.compbiomed.2020.103687] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
22 Ma Y, Zhang P, Tang Y, Pan C, Li G, Liu N, Hu Y, Tang Z. Artificial intelligence: The dawn of a new era for cutting-edge technology based diagnosis and treatment for stroke. Brain Hemorrhages 2020;1:1-5. [DOI: 10.1016/j.hest.2020.01.006] [Reference Citation Analysis]
23 Porciuncula F, Roto AV, Kumar D, Davis I, Roy S, Walsh CJ, Awad LN. Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances. PM R 2018;10:S220-32. [PMID: 30269807 DOI: 10.1016/j.pmrj.2018.06.013] [Cited by in Crossref: 72] [Cited by in F6Publishing: 54] [Article Influence: 24.0] [Reference Citation Analysis]
24 Antos SA, Danilovich MK, Eisenstein AR, Gordon KE, Kording KP. Smartwatches Can Detect Walker and Cane Use in Older Adults. Innov Aging 2019;3:igz008. [PMID: 31025002 DOI: 10.1093/geroni/igz008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
25 Zhang Y, Zhou Y, Zhang D, Song W. A Stroke Risk Detection: Improving Hybrid Feature Selection Method. J Med Internet Res 2019;21:e12437. [PMID: 30938684 DOI: 10.2196/12437] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
26 Vitale JA, Negrini F, Banfi G. Non-pharmacological Interventions for Osteosarcopenia. Osteosarcopenia: Bone, Muscle and Fat Interactions 2019. [DOI: 10.1007/978-3-030-25890-0_15] [Reference Citation Analysis]
27 Halilaj E, Rajagopal A, Fiterau M, Hicks JL, Hastie TJ, Delp SL. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. J Biomech 2018;81:1-11. [PMID: 30279002 DOI: 10.1016/j.jbiomech.2018.09.009] [Cited by in Crossref: 157] [Cited by in F6Publishing: 126] [Article Influence: 39.3] [Reference Citation Analysis]
28 Bo X, Poellabauer C, O'brien MK, Mummidisetty CK, Jayaraman A. Detecting Label Errors in Crowd-Sourced Smartphone Sensor Data. 2018 International Workshop on Social Sensing (SocialSens) 2018. [DOI: 10.1109/socialsens.2018.00017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Reinkensmeyer DJ, Blackstone S, Bodine C, Brabyn J, Brienza D, Caves K, DeRuyter F, Durfee E, Fatone S, Fernie G, Gard S, Karg P, Kuiken TA, Harris GF, Jones M, Li Y, Maisel J, McCue M, Meade MA, Mitchell H, Mitzner TL, Patton JL, Requejo PS, Rimmer JH, Rogers WA, Zev Rymer W, Sanford JA, Schneider L, Sliker L, Sprigle S, Steinfeld A, Steinfeld E, Vanderheiden G, Winstein C, Zhang LQ, Corfman T. How a diverse research ecosystem has generated new rehabilitation technologies: Review of NIDILRR's Rehabilitation Engineering Research Centers. J Neuroeng Rehabil 2017;14:109. [PMID: 29110728 DOI: 10.1186/s12984-017-0321-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
30 Shawen N, Lonini L, Mummidisetty CK, Shparii I, Albert MV, Kording K, Jayaraman A. Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications. JMIR Mhealth Uhealth 2017;5:e151. [PMID: 29021127 DOI: 10.2196/mhealth.8201] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
31 Tomšič M, Domajnko B, Zajc M. The use of assistive technologies after stroke is debunking the myths about the elderly. Topics in Stroke Rehabilitation 2018;25:28-36. [DOI: 10.1080/10749357.2017.1376845] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
32 O'brien MK, Mummidisetty CK, Bo X, Poellabauer C, Jayaraman A. Quantifying community mobility after stroke using mobile phone technology. Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers 2017. [DOI: 10.1145/3123024.3123085] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
33 Lonini L, Gupta A, Deems-Dluhy S, Hoppe-Ludwig S, Kording K, Jayaraman A. Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models. JMIR Rehabil Assist Technol 2017;4:e8. [PMID: 28798008 DOI: 10.2196/rehab.7317] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]