BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Morone G, Paolucci S, Cherubini A, De Angelis D, Venturiero V, Coiro P, Iosa M. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat 2017;13:1303-11. [PMID: 28553117 DOI: 10.2147/NDT.S114102] [Cited by in Crossref: 114] [Cited by in F6Publishing: 50] [Article Influence: 22.8] [Reference Citation Analysis]
Number Citing Articles
1 Mikolajczyk T, Ciobanu I, Badea DI, Iliescu A, Pizzamiglio S, Schauer T, Seel T, Seiciu PL, Turner DL, Berteanu M. Advanced technology for gait rehabilitation: An overview. Advances in Mechanical Engineering 2018;10:168781401878362. [DOI: 10.1177/1687814018783627] [Cited by in Crossref: 31] [Cited by in F6Publishing: 7] [Article Influence: 7.8] [Reference Citation Analysis]
2 Mańdziuk M, Krawczyk-Suszek M, Maciejewski R, Bednarski J, Kotyra A, Cyganik W. The Application of Biological Feedback in the Rehabilitation of Patients after Ischemic Stroke. Sensors (Basel) 2022;22:1769. [PMID: 35270916 DOI: 10.3390/s22051769] [Reference Citation Analysis]
3 Ghanbari Ghoshchi S, De Angelis S, Morone G, Panigazzi M, Persechino B, Tramontano M, Capodaglio E, Zoccolotti P, Paolucci S, Iosa M. Return to Work and Quality of Life after Stroke in Italy: A Study on the Efficacy of Technologically Assisted Neurorehabilitation. Int J Environ Res Public Health 2020;17:E5233. [PMID: 32698430 DOI: 10.3390/ijerph17145233] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
4 Reuter K, Liu C, Le N, Angyan P, Finley JM. General Practice and Digital Methods to Recruit Stroke Survivors to a Clinical Mobility Study: Comparative Analysis. J Med Internet Res 2021;23:e28923. [PMID: 34643544 DOI: 10.2196/28923] [Reference Citation Analysis]
5 Lorusso M, Tramontano M, Casciello M, Pece A, Smania N, Morone G, Tamburella F. Efficacy of Overground Robotic Gait Training on Balance in Stroke Survivors: A Systematic Review and Meta-Analysis. Brain Sciences 2022;12:713. [DOI: 10.3390/brainsci12060713] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Kim J, Kim Y, Lee J, Kim S. Intended gait speed prediction via swing limb kinematics applicable for patients with slow gait. Electronics Letters 2020;56:911-4. [DOI: 10.1049/el.2020.1245] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Garcia A DE, Sierra M SD, Gomez-Vargas D, Jiménez MF, Múnera M, Cifuentes CA. Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists. Sensors (Basel) 2021;21:3521. [PMID: 34069340 DOI: 10.3390/s21103521] [Reference Citation Analysis]
8 Chu CL, Chen YP, Chen CCP, Chen CK, Chang HN, Chang CH, Pei YC. Functional Recovery Patterns of Hemorrhagic and Ischemic Stroke Patients Under Post-Acute Care Rehabilitation Program. Neuropsychiatr Dis Treat 2020;16:1975-85. [PMID: 32884273 DOI: 10.2147/NDT.S253700] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
9 Goffredo M, Iacovelli C, Russo E, Pournajaf S, Di Blasi C, Galafate D, Pellicciari L, Agosti M, Filoni S, Aprile I, Franceschini M. Stroke Gait Rehabilitation: A Comparison of End-Effector, Overground Exoskeleton, and Conventional Gait Training. Applied Sciences 2019;9:2627. [DOI: 10.3390/app9132627] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 5.3] [Reference Citation Analysis]
10 Maggio MG, Naro A, Manuli A, Maresca G, Balletta T, Latella D, De Luca R, Calabrò RS. Effects of Robotic Neurorehabilitation on Body Representation in Individuals with Stroke: A Preliminary Study Focusing on an EEG-Based Approach. Brain Topogr 2021;34:348-62. [PMID: 33661430 DOI: 10.1007/s10548-021-00825-5] [Reference Citation Analysis]
11 Anwer S, Waris A, Gilani SO, Iqbal J, Shaikh N, Pujari AN, Niazi IK. Rehabilitation of Upper Limb Motor Impairment in Stroke: A Narrative Review on the Prevalence, Risk Factors, and Economic Statistics of Stroke and State of the Art Therapies. Healthcare 2022;10:190. [DOI: 10.3390/healthcare10020190] [Reference Citation Analysis]
12 Campagnini S, Liuzzi P, Mannini A, Riener R, Carrozza MC. Effects of control strategies on gait in robot-assisted post-stroke lower limb rehabilitation: a systematic review. J Neuroeng Rehabil 2022;19:52. [PMID: 35659703 DOI: 10.1186/s12984-022-01031-5] [Reference Citation Analysis]
13 Tsiakas K, Kyrarini M, Karkaletsis V, Makedon F, Korn O. A Taxonomy in Robot-Assisted Training: Current Trends, Needs and Challenges. Technologies 2018;6:119. [DOI: 10.3390/technologies6040119] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
14 Morone G, Giansanti D. Comment on Anwer et al. Rehabilitation of Upper Limb Motor Impairment in Stroke: A Narrative Review on the Prevalence, Risk Factors, and Economic Statistics of Stroke and State of the Art Therapies. Healthcare 2022, 10, 190. Healthcare 2022;10:846. [DOI: 10.3390/healthcare10050846] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Infarinato F, Romano P, Goffredo M, Ottaviani M, Galafate D, Gison A, Petruccelli S, Pournajaf S, Franceschini M. Functional Gait Recovery after a Combination of Conventional Therapy and Overground Robot-Assisted Gait Training Is Not Associated with Significant Changes in Muscle Activation Pattern: An EMG Preliminary Study on Subjects Subacute Post Stroke. Brain Sci 2021;11:448. [PMID: 33915808 DOI: 10.3390/brainsci11040448] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Nedergård H, Arumugam A, Sandlund M, Bråndal A, Häger CK. Effect of robotic-assisted gait training on objective biomechanical measures of gait in persons post-stroke: a systematic review and meta-analysis. J Neuroeng Rehabil 2021;18:64. [PMID: 33863345 DOI: 10.1186/s12984-021-00857-9] [Reference Citation Analysis]
17 Morone G, de Sire A, Martino Cinnera A, Paci M, Perrero L, Invernizzi M, Lippi L, Agostini M, Aprile I, Casanova E, Marino D, La Rosa G, Bressi F, Sterzi S, Giansanti D, Battistini A, Miccinilli S, Filoni S, Sicari M, Petrozzino S, Solaro CM, Gargano S, Benanti P, Boldrini P, Bonaiuti D, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzoleni S, Mazzon S, Molteni F, Petrarca M, Picelli A, Gandolfi M, Posteraro F, Senatore M, Turchetti G, Straudi S. Upper Limb Robotic Rehabilitation for Patients with Cervical Spinal Cord Injury: A Comprehensive Review. Brain Sci 2021;11:1630. [PMID: 34942935 DOI: 10.3390/brainsci11121630] [Reference Citation Analysis]
18 Tran BX, Nghiem S, Afoakwah C, Ha GH, Doan LP, Nguyen TP, Le TT, Latkin CA, Ho CSH, Ho RCM. Global mapping of interventions to improve the quality of life of patients with cardiovascular diseases during 1990-2018. Health Qual Life Outcomes 2020;18:254. [PMID: 32727479 DOI: 10.1186/s12955-020-01507-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Shin JC, Jeon HR, Kim D, Cho SI, Min WK, Lee JS, Oh DS, Yoo J. Effects on the Motor Function, Proprioception, Balance, and Gait Ability of the End-Effector Robot-Assisted Gait Training for Spinal Cord Injury Patients. Brain Sci 2021;11:1281. [PMID: 34679346 DOI: 10.3390/brainsci11101281] [Reference Citation Analysis]
20 Kang CJ, Chun MH, Lee J, Lee JY. Effects of robot (SUBAR)-assisted gait training in patients with chronic stroke: Randomized controlled trial. Medicine (Baltimore) 2021;100:e27974. [PMID: 35049203 DOI: 10.1097/MD.0000000000027974] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Semprini M, Laffranchi M, Sanguineti V, Avanzino L, De Icco R, De Michieli L, Chiappalone M. Technological Approaches for Neurorehabilitation: From Robotic Devices to Brain Stimulation and Beyond. Front Neurol 2018;9:212. [PMID: 29686644 DOI: 10.3389/fneur.2018.00212] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
22 Xiong F, Liao X, Xiao J, Bai X, Huang J, Zhang B, Li F, Li P. Emerging Limb Rehabilitation Therapy After Post-stroke Motor Recovery. Front Aging Neurosci 2022;14:863379. [DOI: 10.3389/fnagi.2022.863379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Gandolfi M, Valè N, Dimitrova E, Zanolin ME, Mattiuz N, Battistuzzi E, Beccari M, Geroin C, Picelli A, Waldner A, Smania N. Robot-Assisted Stair Climbing Training on Postural Control and Sensory Integration Processes in Chronic Post-stroke Patients: A Randomized Controlled Clinical Trial. Front Neurosci 2019;13:1143. [PMID: 31708735 DOI: 10.3389/fnins.2019.01143] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
24 Sattelmayer M, Chevalley O, Steuri R, Hilfiker R. Over-ground walking or robot-assisted gait training in people with .multiple sclerosis: does the effect depend on baseline walking speed and disease related disabilities? A systematic review and meta-regression. BMC Neurol 2019;19:93. [PMID: 31068151 DOI: 10.1186/s12883-019-1321-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
25 Fernández-Vázquez D, Cano-de-la-Cuerda R, Gor-García-Fogeda MD, Molina-Rueda F. Wearable Robotic Gait Training in Persons with Multiple Sclerosis: A Satisfaction Study. Sensors (Basel) 2021;21:4940. [PMID: 34300677 DOI: 10.3390/s21144940] [Reference Citation Analysis]
26 Yu D, Yang Z, Lei L, Chaoming N, Ming W. Robot-Assisted Gait Training Plan for Patients in Poststroke Recovery Period: A Single Blind Randomized Controlled Trial. Biomed Res Int 2021;2021:5820304. [PMID: 34497851 DOI: 10.1155/2021/5820304] [Reference Citation Analysis]
27 Bressi F, Cinnera AM, Morone G, Campagnola B, Cricenti L, Santacaterina F, Miccinilli S, Zollo L, Paolucci S, Di Lazzaro V, Sterzi S, Bravi M. Combining Robot-Assisted Gait Training and Non-Invasive Brain Stimulation in Chronic Stroke Patients: A Systematic Review. Front Neurol 2022;13:795788. [DOI: 10.3389/fneur.2022.795788] [Reference Citation Analysis]
28 Zou L, Yeung A, Zeng N, Wang C, Sun L, Thomas GA, Wang H. Effects of Mind-Body Exercises for Mood and Functional Capabilities in Patients with Stroke: An Analytical Review of Randomized Controlled Trials. Int J Environ Res Public Health 2018;15:E721. [PMID: 29641483 DOI: 10.3390/ijerph15040721] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
29 [DOI: 10.1109/biorob49111.2020.9224414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Berriozabalgoitia R, Sanz B, Fraile-Bermúdez AB, Otxoa E, Yeregui I, Bidaurrazaga-Letona I, Duñabeitia I, Antigüedad A, Domercq M, Irazusta J, Rodriguez-Larrad A. An Overground Robotic Gait Training Program for People With Multiple Sclerosis: A Protocol for a Randomized Clinical Trial. Front Med (Lausanne) 2020;7:238. [PMID: 32582732 DOI: 10.3389/fmed.2020.00238] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
31 Feodoroff B, Blümer V. Unilateral non-electric assistive walking device helps neurological and orthopedic patients to improve gait patterns. Gait Posture 2021;92:294-301. [PMID: 34902658 DOI: 10.1016/j.gaitpost.2021.11.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Fang J, Schuwey A, Stocker N, Pedrini B, Sampaio A, Hunt KJ. Preliminary development and technical evaluation of a belt-actuated robotic rehabilitation platform. Technol Health Care 2021;29:595-607. [PMID: 32741796 DOI: 10.3233/THC-202392] [Reference Citation Analysis]
33 Porciuncula F, Baker TC, Arumukhom Revi D, Bae J, Sloutsky R, Ellis TD, Walsh CJ, Awad LN. Targeting Paretic Propulsion and Walking Speed With a Soft Robotic Exosuit: A Consideration-of-Concept Trial. Front Neurorobot 2021;15:689577. [PMID: 34393750 DOI: 10.3389/fnbot.2021.689577] [Reference Citation Analysis]
34 Hong J, Lee J, Choi T, Choi W, Kim T, Kwak K, Kim S, Kim K, Kim D. Feasibility of Overground Gait Training Using a Joint-Torque-Assisting Wearable Exoskeletal Robot in Children with Static Brain Injury. Sensors (Basel) 2022;22:3870. [PMID: 35632279 DOI: 10.3390/s22103870] [Reference Citation Analysis]
35 Feldner HA, Papazian C, Peters K, Steele KM. "It's All Sort of Cool and Interesting…but What Do I Do With It?" A Qualitative Study of Stroke Survivors' Perceptions of Surface Electromyography. Front Neurol 2020;11:1037. [PMID: 33041981 DOI: 10.3389/fneur.2020.01037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
36 Yoon BH, Park C, You J(H. Minimal Contact Robotic Stroke Rehabilitation on Risk of COVID-19, Work Efficiency and Sensorimotor Function. Healthcare 2022;10:691. [DOI: 10.3390/healthcare10040691] [Reference Citation Analysis]
37 Swank C, Galvan C, Dipasquale J, Callender L, Sikka S, Driver S. Lessons learned from robotic gait training during rehabilitation: Therapeutic and medical severity considerations over 3 years. TAD 2020;32:103-10. [DOI: 10.3233/tad-190248] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Cho JE, Yoo JS, Kim KE, Cho ST, Jang WS, Cho KH, Lee WH. Systematic Review of Appropriate Robotic Intervention for Gait Function in Subacute Stroke Patients. Biomed Res Int 2018;2018:4085298. [PMID: 29546057 DOI: 10.1155/2018/4085298] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
39 Yeung LF, Lau CCY, Lai CWK, Soo YOY, Chan ML, Tong RKY. Effects of wearable ankle robotics for stair and over-ground training on sub-acute stroke: a randomized controlled trial. J Neuroeng Rehabil 2021;18:19. [PMID: 33514393 DOI: 10.1186/s12984-021-00814-6] [Reference Citation Analysis]
40 Postol N, Grissell J, McHugh C, Bivard A, Spratt NJ, Marquez J. Effects of therapy with a free-standing robotic exoskeleton on motor function and other health indicators in people with severe mobility impairment due to chronic stroke: A quasi-controlled study. J Rehabil Assist Technol Eng 2021;8:20556683211045837. [PMID: 34707883 DOI: 10.1177/20556683211045837] [Reference Citation Analysis]
41 Guler MA, Erhan B, Yilmaz Yalcinkaya E. Caregiver burden in stroke inpatients: a randomized study comparing robot-assisted gait training and conventional therapy. Acta Neurol Belg 2021;121:729-36. [PMID: 32776169 DOI: 10.1007/s13760-020-01465-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Park C, Oh-Park M, Bialek A, Friel K, Edwards D, You JSH. Abnormal synergistic gait mitigation in acute stroke using an innovative ankle-knee-hip interlimb humanoid robot: a preliminary randomized controlled trial. Sci Rep 2021;11:22823. [PMID: 34819515 DOI: 10.1038/s41598-021-01959-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Yu CS, Nam YG, Kwon BS. Comparison of high-intensive and low-intensive electromechanical-assisted gait training by Exowalk® in patients over 3-month post-stroke. BMC Sports Sci Med Rehabil 2022;14:126. [PMID: 35818062 DOI: 10.1186/s13102-022-00515-0] [Reference Citation Analysis]
44 [DOI: 10.1109/wearracon.2019.8719626] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
45 Rahmati SM, Karimi A. The Design and Control of a Footplate-Based Gait Robo-Assisted System for Lower Limb Actuator. Machines 2022;10:546. [DOI: 10.3390/machines10070546] [Reference Citation Analysis]
46 Molteni F, Guanziroli E, Goffredo M, Calabrò RS, Pournajaf S, Gaffuri M, Gasperini G, Filoni S, Baratta S, Galafate D, Le Pera D, Bramanti P, Franceschini M, On Behalf Of Italian Eksogait Study Group. Gait Recovery with an Overground Powered Exoskeleton: A Randomized Controlled Trial on Subacute Stroke Subjects. Brain Sci 2021;11:104. [PMID: 33466749 DOI: 10.3390/brainsci11010104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
47 Oh W, Park C, Oh S, You SJH. Stage 2: Who Are the Best Candidates for Robotic Gait Training Rehabilitation in Hemiparetic Stroke? J Clin Med 2021;10:5715. [PMID: 34884417 DOI: 10.3390/jcm10235715] [Reference Citation Analysis]
48 Thimabut N, Yotnuengnit P, Charoenlimprasert J, Sillapachai T, Hirano S, Saitoh E, Piravej K. Effects of the robot-assisted gait training device plus physiotherapy in improving ambulatory functions in subacute stroke patients with hemiplegia: An assessor-blinded, randomized controlled trial. Arch Phys Med Rehabil 2022:S0003-9993(22)00201-5. [PMID: 35143747 DOI: 10.1016/j.apmr.2022.01.146] [Reference Citation Analysis]
49 Goffredo M, Infarinato F, Pournajaf S, Romano P, Ottaviani M, Pellicciari L, Galafate D, Gabbani D, Gison A, Franceschini M. Barriers to sEMG Assessment During Overground Robot-Assisted Gait Training in Subacute Stroke Patients. Front Neurol 2020;11:564067. [PMID: 33193001 DOI: 10.3389/fneur.2020.564067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
50 Goffredo M, Romano P, Infarinato F, Cioeta M, Franceschini M, Galafate D, Iacopini R, Pournajaf S, Ottaviani M. Kinematic Analysis of Exoskeleton-Assisted Community Ambulation: An Observational Study in Outdoor Real-Life Scenarios. Sensors (Basel) 2022;22:4533. [PMID: 35746315 DOI: 10.3390/s22124533] [Reference Citation Analysis]
51 Yuan F, Klavon E, Liu Z, Lopez RP, Zhao X. A Systematic Review of Robotic Rehabilitation for Cognitive Training. Front Robot AI 2021;8:605715. [PMID: 34046433 DOI: 10.3389/frobt.2021.605715] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Chang SC, Chu CL, Chen CK, Chang HN, Wong AMK, Chen YP, Pei YC. The Comparison and Interpretation of Machine-Learning Models in Post-Stroke Functional Outcome Prediction. Diagnostics (Basel) 2021;11:1784. [PMID: 34679482 DOI: 10.3390/diagnostics11101784] [Reference Citation Analysis]