BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mdkhana B, Saheb Sharif-Askari N, Ramakrishnan RK, Goel S, Hamid Q, Halwani R. Nucleic Acid-Sensing Pathways During SARS-CoV-2 Infection: Expectations versus Reality. J Inflamm Res 2021;14:199-216. [PMID: 33531826 DOI: 10.2147/JIR.S277716] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023;44:183-218. [PMID: 36579404 DOI: 10.24272/j.issn.2095-8137.2022.464] [Reference Citation Analysis]
2 Wulandari S, Hartono, Wibawa T. The role of HMGB1 in COVID-19-induced cytokine storm and its potential therapeutic targets: A review. Immunology 2022. [PMID: 36571562 DOI: 10.1111/imm.13623] [Reference Citation Analysis]
3 Wu Y, Zhang M, Yuan C, Ma Z, Li W, Zhang Y, Su L, Xu J, Liu W. Progress of cGAS-STING signaling in response to SARS-CoV-2 infection. Front Immunol 2022;13:1010911. [PMID: 36569852 DOI: 10.3389/fimmu.2022.1010911] [Reference Citation Analysis]
4 Moossavi M, Rastegar M, Moossavi SZ, Khorasani M. Molecular Function of cGAS-STING in SARS-CoV-2: A Novel Approach to COVID-19 Treatment. BioMed Research International 2022;2022:1-10. [DOI: 10.1155/2022/6189254] [Reference Citation Analysis]
5 Hafezi S, Saheb Sharif-Askari F, Saheb Sharif-Askari N, Ali Hussain Alsayed H, Alsafar H, Al Anouti F, Hamid Q, Halwani R. Vitamin D enhances type I IFN signaling in COVID-19 patients. Sci Rep 2022;12:17778. [PMID: 36273032 DOI: 10.1038/s41598-022-22307-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Lee SJ, Kim YJ, Ahn DG. Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2. J Microbiol Biotechnol 2022;32:1073-85. [PMID: 36039385 DOI: 10.4014/jmb.2206.06064] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Yong Y, Zhang L, Hu Y, Wu J, Yan L, Pan Y, Tang Y, Yu L, Law BY, Yu C, Zhou J, Li M, Qin D, Zhou X, Wu A. Targeting autophagy regulation in NLRP3 inflammasome-mediated lung inflammation in COVID-19. Clinical Immunology 2022. [DOI: 10.1016/j.clim.2022.109093] [Reference Citation Analysis]
8 Liu Q, Chi S, Dmytruk K, Dmytruk O, Tan S. Coronaviral Infection and Interferon Response: The Virus-Host Arms Race and COVID-19. Viruses 2022;14:1349. [DOI: 10.3390/v14071349] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Gusev E, Sarapultsev A, Solomatina L, Chereshnev V. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int J Mol Sci 2022;23:1716. [PMID: 35163638 DOI: 10.3390/ijms23031716] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
10 Qu L, Chen C, Yin T, Fang Q, Hong Z, Zhou R, Tang H, Dong H. ACE2 and Innate Immunity in the Regulation of SARS-CoV-2-Induced Acute Lung Injury: A Review. Int J Mol Sci 2021;22:11483. [PMID: 34768911 DOI: 10.3390/ijms222111483] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Ramakrishnan RK, Kashour T, Hamid Q, Halwani R, Tleyjeh IM. Unraveling the Mystery Surrounding Post-Acute Sequelae of COVID-19. Front Immunol 2021;12:686029. [PMID: 34276671 DOI: 10.3389/fimmu.2021.686029] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 26.0] [Reference Citation Analysis]
12 Ricci D, Etna MP, Rizzo F, Sandini S, Severa M, Coccia EM. Innate Immune Response to SARS-CoV-2 Infection: From Cells to Soluble Mediators. Int J Mol Sci 2021;22:7017. [PMID: 34209845 DOI: 10.3390/ijms22137017] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 12.5] [Reference Citation Analysis]