BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Al Faraj A, Shaik AS, Afzal S, Al Sayed B, Halwani R. MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles. Int J Nanomedicine 2014;9:1491-503. [PMID: 24711699 DOI: 10.2147/IJN.S59394] [Cited by in Crossref: 42] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Prasher P, Sharma M, Singh SK, Haghi M, Macloughlin R, Chellappan DK, Gupta G, Paudel KR, Hansbro PM, George Oliver BG, Wich PR, Dua K. Advances and applications of dextran-based nanomaterials targeting inflammatory respiratory diseases. Journal of Drug Delivery Science and Technology 2022;74:103598. [DOI: 10.1016/j.jddst.2022.103598] [Reference Citation Analysis]
2 Loo CY, Lee WH. Nanotechnology-based therapeutics for targeting inflammatory lung diseases. Nanomedicine (Lond) 2022. [PMID: 35315290 DOI: 10.2217/nnm-2021-0447] [Reference Citation Analysis]
3 Zhou J, Meli VS, Yu-Tin Chen E, Kapre R, Nagalla R, Xiao W, Borowsky AD, Lam KS, Liu WF, Louie AY. Magnetic resonance imaging of tumor-associated-macrophages (TAMs) with a nanoparticle contrast agent. RSC Adv 2022;12:7742-56. [PMID: 35424752 DOI: 10.1039/d1ra08061j] [Reference Citation Analysis]
4 Liu D, Long M, Gao L, Chen Y, Li F, Shi Y, Gu N. Nanomedicines Targeting Respiratory Injuries for Pulmonary Disease Management. Adv Funct Materials 2022;32:2112258. [DOI: 10.1002/adfm.202112258] [Reference Citation Analysis]
5 Alfahad AJ, Alzaydi MM, Aldossary AM, Alshehri AA, Almughem FA, Zaidan NM, Tawfik EA. Current views in chronic obstructive pulmonary disease pathogenesis and management. Saudi Pharm J 2021;29:1361-73. [PMID: 35002373 DOI: 10.1016/j.jsps.2021.10.008] [Reference Citation Analysis]
6 Prasher P, Sharma M, R Wich P, Jha NK, Singh SK, Chellappan DK, Dua K. Can dextran-based nanoparticles mitigate inflammatory lung diseases? Future Med Chem 2021;13:2027-31. [PMID: 34596425 DOI: 10.4155/fmc-2021-0218] [Reference Citation Analysis]
7 Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, Mohd Isa SA, Chatar Singh GK, Then KY, Ooi GC, Yahaya BH. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD). Stem Cell Res Ther 2021;12:54. [PMID: 33436065 DOI: 10.1186/s13287-020-02088-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Scherger M, Bolli E, Antunes ARP, Arnouk S, Stickdorn J, Van Driessche A, Schild H, Grabbe S, De Geest BG, Van Ginderachter JA, Nuhn L. Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels. Cells 2020;9:E2222. [PMID: 33019594 DOI: 10.3390/cells9102222] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
9 Chen J, Qi J, Chen C, Chen J, Liu L, Gao R, Zhang T, Song L, Ding D, Zhang P, Liu C. Tocilizumab-Conjugated Polymer Nanoparticles for NIR-II Photoacoustic-Imaging-Guided Therapy of Rheumatoid Arthritis. Adv Mater 2020;32:e2003399. [PMID: 32743864 DOI: 10.1002/adma.202003399] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 19.0] [Reference Citation Analysis]
10 Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and Nanotechnology Based Approaches to Combat Chronic Obstructive Pulmonary Disease: Implications for Chronic Airway Diseases. Int J Nanomedicine 2020;15:3803-26. [PMID: 32547029 DOI: 10.2147/IJN.S242516] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 2021;16:24-46. [PMID: 33613728 DOI: 10.1016/j.ajps.2020.03.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
12 Sylvestre M, Crane CA, Pun SH. Progress on Modulating Tumor-Associated Macrophages with Biomaterials. Adv Mater 2020;32:e1902007. [PMID: 31559665 DOI: 10.1002/adma.201902007] [Cited by in Crossref: 62] [Cited by in F6Publishing: 52] [Article Influence: 31.0] [Reference Citation Analysis]
13 Ramesh A, Kumar S, Nandi D, Kulkarni A. CSF1R- and SHP2-Inhibitor-Loaded Nanoparticles Enhance Cytotoxic Activity and Phagocytosis in Tumor-Associated Macrophages. Adv Mater 2019;31:e1904364. [PMID: 31659802 DOI: 10.1002/adma.201904364] [Cited by in Crossref: 64] [Cited by in F6Publishing: 54] [Article Influence: 21.3] [Reference Citation Analysis]
14 Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019;4:33. [PMID: 31637012 DOI: 10.1038/s41392-019-0068-3] [Cited by in Crossref: 114] [Cited by in F6Publishing: 157] [Article Influence: 38.0] [Reference Citation Analysis]
15 da Silva AL, Cruz FF, Rocco PRM, Morales MM. New perspectives in nanotherapeutics for chronic respiratory diseases. Biophys Rev 2017;9:793-803. [PMID: 28914424 DOI: 10.1007/s12551-017-0319-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
16 Ghorani V, Boskabady MH, Khazdair MR, Kianmeher M. Experimental animal models for COPD: a methodological review. Tob Induc Dis 2017;15:25. [PMID: 28469539 DOI: 10.1186/s12971-017-0130-2] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 12.0] [Reference Citation Analysis]
17 Halwani R, Sultana Shaik A, Ratemi E, Afzal S, Kenana R, Al-Muhsen S, Al Faraj A. A novel anti-IL4Rα nanoparticle efficiently controls lung inflammation during asthma. Exp Mol Med 2016;48:e262. [PMID: 27713399 DOI: 10.1038/emm.2016.89] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
18 Yhee JY, Im J, Nho RS. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery. J Clin Med 2016;5:E82. [PMID: 27657144 DOI: 10.3390/jcm5090082] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 6.7] [Reference Citation Analysis]
19 Markus MA, Napp J, Behnke T, Mitkovski M, Monecke S, Dullin C, Kilfeather S, Dressel R, Resch-Genger U, Alves F. Tracking of Inhaled Near-Infrared Fluorescent Nanoparticles in Lungs of SKH-1 Mice with Allergic Airway Inflammation. ACS Nano 2015;9:11642-57. [PMID: 26513457 DOI: 10.1021/acsnano.5b04026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
20 Chen YW, Liou GG, Pan HB, Tseng HH, Hung YT, Chou CP. Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonance imaging. Int J Nanomedicine. 2015;10:6997-7018. [PMID: 26635474 DOI: 10.2147/ijn.s86592] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
21 Al Faraj A, Shaik AS, Alnafea M. Intrapulmonary administration of bone-marrow derived M1/M2 macrophages to enhance the resolution of LPS-induced lung inflammation: noninvasive monitoring using free-breathing MR and CT imaging protocols. BMC Med Imaging 2015;15:16. [PMID: 25986463 DOI: 10.1186/s12880-015-0059-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
22 Freise AC, Wu AM. In vivo imaging with antibodies and engineered fragments. Mol Immunol 2015;67:142-52. [PMID: 25934435 DOI: 10.1016/j.molimm.2015.04.001] [Cited by in Crossref: 116] [Cited by in F6Publishing: 109] [Article Influence: 16.6] [Reference Citation Analysis]
23 Wermuth PJ, Jimenez SA. The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clin Transl Med. 2015;4:2. [PMID: 25852818 DOI: 10.1186/s40169-015-0047-4] [Cited by in Crossref: 83] [Cited by in F6Publishing: 77] [Article Influence: 11.9] [Reference Citation Analysis]
24 Al Faraj A, Shaik AP, Shaik AS. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int J Nanomedicine 2015;10:157-68. [PMID: 25565811 DOI: 10.2147/IJN.S75074] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
25 Nogueira DR, Mitjans M, Rolim CM, Vinardell MP. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies. Nanomaterials (Basel) 2014;4:454-84. [PMID: 28344232 DOI: 10.3390/nano4020454] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]