BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, Karimi M, Webster TJ, Hamblin MR, Mostafavi E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine 2021;16:1681-706. [PMID: 33688185 DOI: 10.2147/IJN.S299448] [Cited by in Crossref: 57] [Cited by in F6Publishing: 66] [Article Influence: 28.5] [Reference Citation Analysis]
Number Citing Articles
1 Ramos-valle A, Marín-caba L, Hevia LG, Correa-duarte M, Fanarraga M. One-pot synthesis of compact DNA silica particles for gene delivery and extraordinary DNA preservation. Materials Today Advances 2023;18:100357. [DOI: 10.1016/j.mtadv.2023.100357] [Reference Citation Analysis]
2 Hosseini SM, Mohammadnejad J, Najafi-Taher R, Zadeh ZB, Tanhaei M, Ramakrishna S. Multifunctional Carbon-Based Nanoparticles: Theranostic Applications in Cancer Therapy and Diagnosis. ACS Appl Bio Mater 2023. [PMID: 36921253 DOI: 10.1021/acsabm.2c01000] [Reference Citation Analysis]
3 Ma J, Wang G, Ding X, Wang F, Zhu C, Rong Y. Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS Omega 2023. [DOI: 10.1021/acsomega.2c06242] [Reference Citation Analysis]
4 Ghosh S, Thongmee S, Mostafavi E. Chemically Modified Carbon Nanotubes in Drug Delivery. Chemically Modified Carbon Nanotubes for Commercial Applications 2023. [DOI: 10.1002/9783527838790.ch14] [Reference Citation Analysis]
5 Agnihotri T, Prajapati SK, Gomte SS, Jain A. Chemically Modified Carbon Nanotubes in Cancer Therapy. Chemically Modified Carbon Nanotubes for Commercial Applications 2023. [DOI: 10.1002/9783527838790.ch13] [Reference Citation Analysis]
6 Esmaeili Y, Mirahmadi‐zare SZ, Bigham A, Boshtam M, Gharghish S, Zomorrodi R. Applications of Chemically Modified Carbon Nanotubes for Tissue Engineering. Chemically Modified Carbon Nanotubes for Commercial Applications 2023. [DOI: 10.1002/9783527838790.ch16] [Reference Citation Analysis]
7 Liu M, Yuan J, Wang G, Ni N, Lv Q, Liu S, Gong Y, Zhao X, Wang X, Sun X. Shape programmable T(1)-T(2) dual-mode MRI nanoprobes for cancer theranostics. Nanoscale 2023;15:4694-724. [PMID: 36786157 DOI: 10.1039/d2nr07009j] [Reference Citation Analysis]
8 Gubarev V, Krivokorytov M, Krivtsun V, Novikova N, Yakunin S, Pal A, Ramirez B JA, Krasnikov D, Medvedev V, Nasibulin AG. Ar permeability through densified single-walled carbon nanotube-based membranes. Journal of Applied Physics 2023;133:095106. [DOI: 10.1063/5.0135082] [Reference Citation Analysis]
9 Salave S, Rana D, Vitore J, Jain A. Functionalized Carbon Nanotubes for Cell Tracking. Functionalized Carbon Nanotubes for Biomedical Applications 2023. [DOI: 10.1002/9781119905080.ch13] [Reference Citation Analysis]
10 Agnihotri T, Shinde T, Gitte M, Paradia PK, Tekade RK, Jain A. Functionalized Carbon Nanotubes for Gene Therapy. Functionalized Carbon Nanotubes for Biomedical Applications 2023. [DOI: 10.1002/9781119905080.ch7] [Reference Citation Analysis]
11 Masoudi Asil S, Guerrero ED, Bugarini G, Cayme J, De Avila N, Garcia J, Hernandez A, Mecado J, Madero Y, Moncayo F, Olmos R, Perches D, Roman J, Salcido‐padilla D, Sanchez E, Trejo C, Trevino P, Nurunnabi M, Narayan M. Theranostic applications of multifunctional carbon nanomaterials. VIEW 2023. [DOI: 10.1002/viw.20220056] [Reference Citation Analysis]
12 Gaydhane MK, Sharma CS, Majumdar S. Electrospun nanofibres in drug delivery: advances in controlled release strategies. RSC Adv 2023;13:7312-28. [PMID: 36891485 DOI: 10.1039/d2ra06023j] [Reference Citation Analysis]
13 Zheng X, Zhang Z, Zhou G, Zou M, Zhang F, Hou PX, Shi C, Cheng HM, Wang M, Liu C. Efficient fabrication of single-wall carbon nanotube nanoreactors by defect-induced cutting. Nanoscale 2023;15:3931-9. [PMID: 36723243 DOI: 10.1039/d2nr06696c] [Reference Citation Analysis]
14 Hatta MHM, Matmin J, Malek NANN, Kamisan FH, Badruzzaman A, Batumalaie K, Ling Lee S, Abdul Wahab R. COVID‐19: Prevention, Detection, and Treatment by Using Carbon Nanotubes‐Based Materials. ChemistrySelect 2023;8. [DOI: 10.1002/slct.202204615] [Reference Citation Analysis]
15 Zygouri P, Athinodorou AM, Spyrou K, Simos YV, Subrati M, Asimakopoulos G, Vasilopoulos KC, Vezyraki P, Peschos D, Tsamis K, Gournis DP. Oxidized-Multiwalled Carbon Nanotubes as Non-Toxic Nanocarriers for Hydroxytyrosol Delivery in Cells. Nanomaterials (Basel) 2023;13. [PMID: 36839082 DOI: 10.3390/nano13040714] [Reference Citation Analysis]
16 Jwameer MR, Salman SA, Noori FTM, Sulaiman GM, Jabir MS, Khalil KAA, Ahmed EM, Soliman MTA. Antiproliferative Activity of PEG-PEI-SWCNTs against AMJ13 Breast Cancer Cells. Journal of Nanomaterials 2023;2023:1-8. [DOI: 10.1155/2023/2855788] [Reference Citation Analysis]
17 Talukdar D, Kumar P, Sharma D, Balaramnavar VM, Afzal O, Altamimi ASA, Kazmi I, Al-Abbasi FA, Alzarea SI, Gupta G, Gupta MM. Anticancer Phytochemical-Based Nanoformulations: Therapeutic Intervention in Cancer Cell Lines. J Environ Pathol Toxicol Oncol 2023;42:79-93. [PMID: 36734954 DOI: 10.1615/JEnvironPatholToxicolOncol.2022044317] [Reference Citation Analysis]
18 Shi Y, Chen L, Zhang H, Nie G, Zhang Z, Zhu M. The potential of nano-enabled oral ecosystem surveillance for respiratory disease management. Nano Today 2023;48:101693. [DOI: 10.1016/j.nantod.2022.101693] [Reference Citation Analysis]
19 Thakur CK, Karthikeyan C, Abou-Dahech MS, Altabakha MMAM, Al Shahwan MJS, Ashby CR Jr, Tiwari AK, Babu RJ, Moorthy NSHN. Microwave-Assisted Functionalization of Multi-Walled Carbon Nanotubes for Biosensor and Drug Delivery Applications. Pharmaceutics 2023;15. [PMID: 36839659 DOI: 10.3390/pharmaceutics15020335] [Reference Citation Analysis]
20 Park JY, Lee GH, Yoo KH, Khang D. Overcoming multidrug-resistant lung cancer by mitochondrial-associated ATP inhibition using nanodrugs. J Nanobiotechnology 2023;21:12. [PMID: 36635755 DOI: 10.1186/s12951-023-01768-8] [Reference Citation Analysis]
21 Strzelecka K, Piotrowska U, Sobczak M, Oledzka E. The Advancement of Biodegradable Polyesters as Delivery Systems for Camptothecin and Its Analogues-A Status Report. Int J Mol Sci 2023;24. [PMID: 36674567 DOI: 10.3390/ijms24021053] [Reference Citation Analysis]
22 Inobeme A, Adetunji C, Maliki M, Onyeachu B, Kelani T, Eziukwu C, Olori E, Mathew J, Bamigboye M. Strategies to synthesize, advantages, and disadvantages of pharmaceutical nanoparticles. Nanotechnology for Drug Delivery and Pharmaceuticals 2023. [DOI: 10.1016/b978-0-323-95325-2.00006-7] [Reference Citation Analysis]
23 Harmanci D, Hanoglu SB, Beduk D, Durmus C, Timur S. Theranostic applications of functionalized carbon nanotubes. Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery 2023. [DOI: 10.1016/b978-0-323-85199-2.00002-9] [Reference Citation Analysis]
24 Priester MI, Ten Hagen TLM. Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023;192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Reference Citation Analysis]
25 Ghosh S, Mishra R, Ajay AK, Thorat N, Mostafavi E. Carbon Nanotubes-Based Anticancer Nanomedicine. Materials Horizons: From Nature to Nanomaterials 2023. [DOI: 10.1007/978-981-19-7188-4_32] [Reference Citation Analysis]
26 Chatterjee S. Carbon nanotubes as nanovectors for targeted delivery of platinum based anticancer drugs. Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery 2023. [DOI: 10.1016/b978-0-323-85199-2.00004-2] [Reference Citation Analysis]
27 Sun D, Lu ZR. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharm Res 2023;40:27-46. [PMID: 36600047 DOI: 10.1007/s11095-022-03460-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Giri L, Rout SR, Gowtham K, Abourehab MA, Kesharwani P, Dandela R. Biomimetic carbon nanotubes for neurological disease therapeutic. Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery 2023. [DOI: 10.1016/b978-0-323-85199-2.00001-7] [Reference Citation Analysis]
29 Dahiya S, Dahiya R. Smart drug delivery systems and their clinical potential. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00007-6] [Reference Citation Analysis]
30 Rehman FU, Khattak S, Mumtaz S, Hanif S, Muhammad P. Hybrid platforms for drug delivery applications. Novel Platforms for Drug Delivery Applications 2023. [DOI: 10.1016/b978-0-323-91376-8.00002-1] [Reference Citation Analysis]
31 Rabiee N, Ahmadi S, Iravani S, Varma RS. Natural resources for sustainable synthesis of nanomaterials with anticancer applications: A move toward green nanomedicine. Environ Res 2023;216:114803. [PMID: 36379236 DOI: 10.1016/j.envres.2022.114803] [Reference Citation Analysis]
32 Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022;10:9944-67. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Reference Citation Analysis]
33 Pu Z, Wei Y, Sun Y, Wang Y, Zhu S. Carbon Nanotubes as Carriers in Drug Delivery for Non-Small Cell Lung Cancer, Mechanistic Analysis of Their Carcinogenic Potential, Safety Profiling and Identification of Biomarkers. IJN 2022;Volume 17:6157-6180. [DOI: 10.2147/ijn.s384592] [Reference Citation Analysis]
34 Ben Doudou B, Chen J. Interactions of amine functional group with Stone-Wales defects on single-walled carbon nanotubes: A theoretical study. Computational Condensed Matter 2022;33:e00751. [DOI: 10.1016/j.cocom.2022.e00751] [Reference Citation Analysis]
35 Ahmadi S, Seraj M, Chiani M, Hosseini S, Bazzazan S, Akbarzadeh I, Saffar S, Mostafavi E. In vitro Development of Controlled-Release Nanoniosomes for Improved Delivery and Anticancer Activity of Letrozole for Breast Cancer Treatment. IJN 2022;Volume 17:6233-6255. [DOI: 10.2147/ijn.s384085] [Reference Citation Analysis]
36 Heide F, Stetefeld J. A Structural Analysis of Proteinaceous Nanotube Cavities and Their Applications in Nanotechnology. Nanomaterials (Basel) 2022;12. [PMID: 36432365 DOI: 10.3390/nano12224080] [Reference Citation Analysis]
37 Street STG, Chrenek J, Harniman RL, Letwin K, Mantell JM, Borucu U, Willerth SM, Manners I. Length-Controlled Nanofiber Micelleplexes as Efficient Nucleic Acid Delivery Vehicles. J Am Chem Soc 2022. [PMID: 36260789 DOI: 10.1021/jacs.2c06695] [Reference Citation Analysis]
38 Jiang S, Li S, Mei W, Zhang J, Wu Y, Liu S, Yu X. Interlock Protective System from Hyperbranched Polyethyleneimine and Choline Phosphate Liposome for Targeted In Vivo Gene Delivery. Adv Materials Inter. [DOI: 10.1002/admi.202201390] [Reference Citation Analysis]
39 Guo J, Huang L. Nanodelivery of cGAS-STING activators for tumor immunotherapy. Trends Pharmacol Sci 2022:S0165-6147(22)00177-8. [PMID: 36089410 DOI: 10.1016/j.tips.2022.08.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Torrik A, Zaerin S, Zarif M. Doxorubicin and Imatinib co-drug delivery using non-covalently functionalized carbon nanotube: Molecular dynamics study. Journal of Molecular Liquids 2022;362:119789. [DOI: 10.1016/j.molliq.2022.119789] [Reference Citation Analysis]
41 Xu N, Zhang X, Qi T, Wu Y, Xie X, Chen F, Shao D, Liao J. Biomedical applications and prospects of temperature‐orchestrated photothermal therapy. MedComm – Biomaterials and Applications 2022;1. [DOI: 10.1002/mba2.25] [Reference Citation Analysis]
42 Ho TH, Yang CH, Jiang ZE, Lin HY, Chen YF, Wang TL. NIR-Triggered Generation of Reactive Oxygen Species and Photodynamic Therapy Based on Mesoporous Silica-Coated LiYF4 Upconverting Nanoparticles. Int J Mol Sci 2022;23:8757. [PMID: 35955888 DOI: 10.3390/ijms23158757] [Reference Citation Analysis]
43 Kharlamova MV, Paukov M, Burdanova MG. Nanotube Functionalization: Investigation, Methods and Demonstrated Applications. Materials 2022;15:5386. [DOI: 10.3390/ma15155386] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
44 Holmannova D, Borsky P, Svadlakova T, Borska L, Fiala Z. Carbon Nanoparticles and Their Biomedical Applications. Applied Sciences 2022;12:7865. [DOI: 10.3390/app12157865] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Luo Z, Bai X, Yue T, Hu G. The aggregation of carbon nanotubes deteriorates their adverse effects on pulmonary surfactant monolayer. Nano Today 2022;45:101525. [DOI: 10.1016/j.nantod.2022.101525] [Reference Citation Analysis]
46 Ahmadi S, Jajarmi V, Ashrafizadeh M, Zarrabi A, Haponiuk JT, Saeb MR, Lima EC, Rabiee M, Rabiee N. Mission impossible for cellular internalization: When porphyrin alliance with UiO-66-NH2 MOF gives the cell lines a ride. Journal of Hazardous Materials 2022;436:129259. [DOI: 10.1016/j.jhazmat.2022.129259] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
47 He G, Li M, Li X, Wang Q, Xie Z, Xue Y, Wang K, Yu J, Sun G, Yu H, Qiu X. Isoporous membrane from PS-b-PAA/MWCNT-Ag composite with high photothermal conversion efficiency. Journal of Membrane Science 2022. [DOI: 10.1016/j.memsci.2022.120950] [Reference Citation Analysis]
48 Sastri KT, Gupta NV, M S, Chakraborty S, Kumar H, Chand P, Balamuralidhara V, Gowda D. Nanocarrier facilitated drug delivery to the brain through intranasal route: A promising approach to transcend bio-obstacles and alleviate neurodegenerative conditions. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103656] [Reference Citation Analysis]
49 Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.08.006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Zhu M, Gu Y, Bian C, Xie X, Bai Y, Zhang N. Applications of Nonviral Biomaterials for microRNA Transfection in Bone Tissue Engineering. Front Mater 2022;9:932157. [DOI: 10.3389/fmats.2022.932157] [Reference Citation Analysis]
51 Xiao X, Zhang Y, Zhou L, Li B, Gu L. Photoluminescence and Fluorescence Quenching of Graphene Oxide: A Review. Nanomaterials (Basel) 2022;12:2444. [PMID: 35889668 DOI: 10.3390/nano12142444] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
52 Zarepour A, Bal Öztürk A, Koyuncu Irmak D, Yaşayan G, Gökmen A, Karaöz E, Zarepour A, Zarrabi A, Mostafavi E. Combination Therapy Using Nanomaterials and Stem Cells to Treat Spinal Cord Injuries. Eur J Pharm Biopharm 2022:S0939-6411(22)00142-4. [PMID: 35850168 DOI: 10.1016/j.ejpb.2022.07.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Yang C, Yang J, Lu A, Gong J, Yang Y, Lin X, Li M, Xu H. Nanoparticles in ocular applications and their potential toxicity. Front Mol Biosci 2022;9:931759. [DOI: 10.3389/fmolb.2022.931759] [Reference Citation Analysis]
54 Singh R, Kumar S. Cancer Targeting and Diagnosis: Recent Trends with Carbon Nanotubes. Nanomaterials 2022;12:2283. [DOI: 10.3390/nano12132283] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
55 Mostafavi E, Zare H. Carbon-based nanomaterials in gene therapy. OpenNano 2022;7:100062. [DOI: 10.1016/j.onano.2022.100062] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Contreras-torres FF, Salas-treviño D, Soto-domínguez A, De Jesús García-rivas G. Carbon Nanotubes in Tumor-Targeted Chemotherapeutic Formulations: A Review of Opportunities and Challenges. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c01118] [Reference Citation Analysis]
57 Olăreț E, Voicu ȘI, Oprea R, Miculescu F, Butac L, Stancu IC, Serafim A. Nanostructured Polyacrylamide Hydrogels with Improved Mechanical Properties and Antimicrobial Behavior. Polymers (Basel) 2022;14:2320. [PMID: 35745896 DOI: 10.3390/polym14122320] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Rawal SU, Patel BM, Patel MM. New Drug Delivery Systems Developed for Brain Targeting. Drugs 2022. [PMID: 35596879 DOI: 10.1007/s40265-022-01717-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Chhetri KB, Dasgupta C, Maiti PK. Diameter Dependent Melting and Softening of dsDNA Under Cylindrical Confinement. Front Chem 2022;10:879746. [DOI: 10.3389/fchem.2022.879746] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
60 Porrang S, Davaran S, Rahemi N, Allahyari S, Mostafavi E. How Advancing are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature. IJN 2022;Volume 17:1803-27. [DOI: 10.2147/ijn.s353349] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
61 Ferreira Dantas GDP, Nascimento Martins EMD, Gomides LS, Chequer FMD, Burbano RR, Furtado CA, Santos AP, Tagliati CA. Pyrene-polyethylene glycol-modified multi-walled carbon nanotubes: Genotoxicity in V79-4 fibroblast cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2022;876-877:503463. [DOI: 10.1016/j.mrgentox.2022.503463] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Petrescu E, Cirtoaje C. Electric Properties of Multiwalled Carbon Nanotubes Dispersed in Liquid Crystals and Their Influence on Freedericksz Transitions. Nanomaterials 2022;12:1119. [DOI: 10.3390/nano12071119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Halib N, Pavan N, Trombetta C, Dapas B, Farra R, Scaggiante B, Grassi M, Grassi G. An Overview of siRNA Delivery Strategies for Urological Cancers. Pharmaceutics 2022;14. [PMID: 35456552 DOI: 10.3390/pharmaceutics14040718] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Shukla SS, Pandey RK, Kalyani G. Controlled Drug Delivery Systems. Advancements in Controlled Drug Delivery Systems 2022. [DOI: 10.4018/978-1-7998-8908-3.ch008] [Reference Citation Analysis]
65 Jahangiri-manesh A, Mousazadeh M, Taji S, Bahmani A, Zarepour A, Zarrabi A, Sharifi E, Azimzadeh M. Gold Nanorods for Drug and Gene Delivery: An Overview of Recent Advancements. Pharmaceutics 2022;14:664. [DOI: 10.3390/pharmaceutics14030664] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
66 Mehanna MM, Abla KK. siRNA nanohybrid systems: false hope or feasible answer in cancer management. Ther Deliv 2022. [PMID: 35105155 DOI: 10.4155/tde-2021-0068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Kanth SK, Sharma A, Park BC, Song W, Ruh H, Hong J. Advancement in fabrication of carbon nanotube tip for atomic force microscope using multi-axis nanomanipulator in scanning electron microscope. Nanotechnology 2022;33. [PMID: 35016164 DOI: 10.1088/1361-6528/ac4a2b] [Reference Citation Analysis]
68 von Ranke NL, Castro HC, Rodrigues CR. Molecular modelling and dynamics simulations of single-wall carbon nanotube as a drug carrier: New insights into the drug-loading process. Journal of Molecular Graphics and Modelling 2022. [DOI: 10.1016/j.jmgm.2022.108145] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
69 de Almeida Barcelos K, Alisaraie L. Microtubule-Inspired Functionalization of Carbon Nanotubes: A Biomimetic Carrier Design.. [DOI: 10.1101/2022.01.20.477082] [Reference Citation Analysis]
70 Makwikwi T, Kumar GV, Manicum AE, Sekaran S, Katerere D. Carbon-Based Nanomaterials for Targeted Drug and Gene Delivery Systems. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-031-12658-1_16] [Reference Citation Analysis]
71 Bhattacharjee S, Mandal DP, Adhikary A. Nanotechnology: Scopes and various aspects of drug delivery. Advances in Nanotechnology-Based Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-323-88450-1.00001-6] [Reference Citation Analysis]
72 de Almeida Barcelos K, Alisaraie L. Microtubule-inspired functionalization of carbon nanotubes: a biomimetic carrier design. Mol Syst Des Eng . [DOI: 10.1039/d1me00190f] [Reference Citation Analysis]
73 Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2021. [PMID: 34919379 DOI: 10.1021/acs.jmedchem.1c01144] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
74 Bukhari B, Naveed M, Makhdoom SI, Jabeen K, Asif MF, Batool H, Ahmed N, Chan YY. A Comparison Between Organic and Inorganic Nanoparticles: Prime Nanoparticles for Tumor Curation. NANO 2021;16:2130011. [DOI: 10.1142/s1793292021300115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
75 Mezzasalma SA, Grassi L, Grassi M. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry. Mater Sci Eng C Mater Biol Appl 2021;131:112480. [PMID: 34857266 DOI: 10.1016/j.msec.2021.112480] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
76 Saeb MR, Rabiee N, Mozafari M, Verpoort F, Voskressensky LG, Luque R. Metal-Organic Frameworks (MOFs) for Cancer Therapy. Materials (Basel) 2021;14:7277. [PMID: 34885431 DOI: 10.3390/ma14237277] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
77 Burdanova MG, Kharlamova MV, Kramberger C, Nikitin MP. Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. Nanomaterials (Basel) 2021;11:3020. [PMID: 34835783 DOI: 10.3390/nano11113020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
78 Gaur M, Misra C, Yadav AB, Swaroop S, Maolmhuaidh FÓ, Bechelany M, Barhoum A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials (Basel) 2021;14:5978. [PMID: 34683568 DOI: 10.3390/ma14205978] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
79 Semikolenova O, Sakovina L, Akhmetova E, Kim D, Vokhtantsev I, Golyshev V, Vorobyeva M, Novopashin S, Novopashina D. Photoactivatable nanoCRISPR/Cas9 System Based on crRNA Reversibly Immobilized on Carbon Nanoparticles. Int J Mol Sci 2021;22:10919. [PMID: 34681578 DOI: 10.3390/ijms222010919] [Reference Citation Analysis]
80 Adepu S, Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021;26:5905. [PMID: 34641447 DOI: 10.3390/molecules26195905] [Cited by in Crossref: 28] [Cited by in F6Publishing: 36] [Article Influence: 14.0] [Reference Citation Analysis]
81 Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM, Aisyah HA, Norrrahim MNF, Ilyas RA, Abdullah N, Zainudin ES, Sapuan SM, Khalina A. Mechanical Performance and Applications of CNTs Reinforced Polymer Composites-A Review. Nanomaterials (Basel) 2021;11:2186. [PMID: 34578502 DOI: 10.3390/nano11092186] [Cited by in Crossref: 34] [Cited by in F6Publishing: 40] [Article Influence: 17.0] [Reference Citation Analysis]
82 Mezei A, Pons R. MWNTs or PEG as Stability Enhancers for DNA-Cationic Surfactant Gel Particles. Int J Mol Sci 2021;22:8801. [PMID: 34445500 DOI: 10.3390/ijms22168801] [Reference Citation Analysis]
83 Wolski P, Nieszporek K, Panczyk T. Cytosine-Rich DNA Fragments Covalently Bound to Carbon Nanotube as Factors Triggering Doxorubicin Release at Acidic pH. A Molecular Dynamics Study. Int J Mol Sci 2021;22:8466. [PMID: 34445172 DOI: 10.3390/ijms22168466] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
84 Saeb MR, Rabiee N, Seidi F, Farasati Far B, Bagherzadeh M, Lima EC, Rabiee M. Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection. Journal of Bioresources and Bioproducts 2021;6:215-22. [DOI: 10.1016/j.jobab.2021.06.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
85 Mishra V, Singh M, Mishra Y, Charbe N, Nayak P, Sudhakar K, Aljabali AAA, Shahcheraghi SH, Bakshi H, Serrano-aroca Á, Tambuwala MM. Nanoarchitectures in Management of Fungal Diseases: An Overview. Applied Sciences 2021;11:7119. [DOI: 10.3390/app11157119] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
86 Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Fatahi Y, Tavakolizadeh M, Pourjavadi A, Jouyandeh M, Saeb MR, Mozafari M, Shokouhimehr M, Varma RS. Multifunctional 3D Hierarchical Bioactive Green Carbon-Based Nanocomposites. ACS Sustainable Chem Eng 2021;9:8706-20. [DOI: 10.1021/acssuschemeng.1c00781] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]