BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yan H, Xue Z, Xie J, Dong Y, Ma Z, Sun X, Kebebe Borga D, Liu Z, Li J. Toxicity of Carbon Nanotubes as Anti-Tumor Drug Carriers. Int J Nanomedicine 2019;14:10179-94. [PMID: 32021160 DOI: 10.2147/IJN.S220087] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Chakraborty R, Mukhopadhyay A, Paul S, Sarkar S, Mukhopadhyay R. Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. Sci Total Environ 2023;863:160859. [PMID: 36526196 DOI: 10.1016/j.scitotenv.2022.160859] [Reference Citation Analysis]
2 Fu C, Qin X, Zhang J, Zhang T, Song Y, Yang J, Wu G, Luo D, Jiang N, Bikker FJ. In vitro and in vivo toxicological evaluation of carbon quantum dots originating from Spinacia oleracea. Heliyon 2023. [DOI: 10.1016/j.heliyon.2023.e13422] [Reference Citation Analysis]
3 Dahiya S, Dahiya R. Smart drug delivery systems and their clinical potential. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00007-6] [Reference Citation Analysis]
4 Gul G, Faller R, Ileri-Ercan N. Polystyrene-modified carbon nanotubes: Promising carriers in targeted drug delivery. Biophys J 2022;121:4271-9. [PMID: 36230001 DOI: 10.1016/j.bpj.2022.10.014] [Reference Citation Analysis]
5 Wang L, Shi Y, Jiang J, Li C, Zhang H, Zhang X, Jiang T, Wang L, Wang Y, Feng L. Micro-Nanocarriers Based Drug Delivery Technology for Blood-Brain Barrier Crossing and Brain Tumor Targeting Therapy. Small 2022;18:e2203678. [PMID: 36103614 DOI: 10.1002/smll.202203678] [Reference Citation Analysis]
6 Guo S, Wang Z. Glyceroglycolipids in marine algae: A review of their pharmacological activity. Front Pharmacol 2022;13:1008797. [DOI: 10.3389/fphar.2022.1008797] [Reference Citation Analysis]
7 Piwoński H, Nozue S, Habuchi S. The Pursuit of Shortwave Infrared-Emitting Nanoparticles with Bright Fluorescence through Molecular Design and Excited-State Engineering of Molecular Aggregates. ACS Nanosci Au 2022;2:253-283. [DOI: 10.1021/acsnanoscienceau.1c00038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Xu L, Xie L, Fang C, Lou W, Jiang T. New progress in tumor treatment based on nanoparticles combined with irreversible electroporation. Nano Select 2022. [DOI: 10.1002/nano.202200064] [Reference Citation Analysis]
9 Singh R, Kumar S. Cancer Targeting and Diagnosis: Recent Trends with Carbon Nanotubes. Nanomaterials 2022;12:2283. [DOI: 10.3390/nano12132283] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Rudnytska OV, Kulish YV, Khita OO, Minchenko DO, Tsymbal DO, Viletska YM, Sliusar MY, Trufanova DD, Minchenko OH. Exposure to nanographene oxide induces gene expression dysregulation in normal human astrocytes. Endocrine Regulations 2022;56:216-26. [DOI: 10.2478/enr-2022-0023] [Reference Citation Analysis]
11 Wani SUD, Ali M, Masoodi MH, Khan NA, Zargar MI, Hassan R, Mir SA, Gautam SP, Gangadharappa HV, M. Osmani RA. A review on nanoparticles categorization, characterization and applications in drug delivery systems. Vibrational Spectroscopy 2022;121:103407. [DOI: 10.1016/j.vibspec.2022.103407] [Reference Citation Analysis]
12 Jeong J, Choi J. Quantitative adverse outcome pathway (qAOP) using bayesian network model on comparative toxicity of multi-walled carbon nanotubes (MWCNTs): safe-by-design approach. Nanotoxicology 2022;16:679-94. [PMID: 36353843 DOI: 10.1080/17435390.2022.2140615] [Reference Citation Analysis]
13 Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem Biol Interact 2022;:109964. [PMID: 35513013 DOI: 10.1016/j.cbi.2022.109964] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Minchenko OH, Khita OO, Rudnytska OV, Yefimova YV, Tsymbal DO, Minchenko DO, Sliusar MY, He Q, Liu K. The impact of single walled carbon nanotubes on the expression of microRNA in zebrafish (Danio rerio) embryos. Endocr Regul 2022;56:115-25. [PMID: 35489050 DOI: 10.2478/enr-2022-0013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Liu Z, Ji X, He D, Zhang R, Liu Q, Xin T. Nanoscale Drug Delivery Systems in Glioblastoma. Nanoscale Res Lett 2022;17:27. [PMID: 35171358 DOI: 10.1186/s11671-022-03668-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
16 Goswami S, Dhobale KD, Wavhale RD, Goswami B, Banerjee SS. Computer vision and machine‐learning techniques for quantification and predictive modeling of intracellular anticancer drug delivery by nanocarriers. Applied AI Letters 2022;3. [DOI: 10.1002/ail2.50] [Reference Citation Analysis]
17 Tang L, Zhang A, Zhang Z, Zhao Q, Li J, Mei Y, Yin Y, Wang W. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy. Cancer Commun (Lond) 2022;42:141-63. [PMID: 35001556 DOI: 10.1002/cac2.12255] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
18 Cao H, Qi W, Gao X, Wu Q, Tian L, Wu W. Graphene Quantum Dots prepared by Electron Beam Irradiation for Safe Fluorescence Imaging of Tumor. Nanotheranostics 2022;6:205-14. [PMID: 34976595 DOI: 10.7150/ntno.67070] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Ambika, Pratap Singh P. Nanocosmetics: Opportunities and Risks. Handbook of Consumer Nanoproducts 2022. [DOI: 10.1007/978-981-16-8698-6_59] [Reference Citation Analysis]
20 Kamazani FM, Sotoodehnejad Nematalahi F, Siadat SD, Pornour M, Sheikhpour M. A success targeted nano delivery to lung cancer cells with multi-walled carbon nanotubes conjugated to bromocriptine. Sci Rep 2021;11:24419. [PMID: 34952904 DOI: 10.1038/s41598-021-03031-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
21 Zhu W, Wei Z, Han C, Weng X. Nanomaterials as Promising Theranostic Tools in Nanomedicine and Their Applications in Clinical Disease Diagnosis and Treatment. Nanomaterials (Basel) 2021;11:3346. [PMID: 34947695 DOI: 10.3390/nano11123346] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Chaud MV, Batain F, Souto EB, Severino P, Zielińska A, Alves TFR. Risk Assessment of Injectable Nanoparticles Used as Nanomedicine. Nanotechnology in Medicine 2021. [DOI: 10.1002/9781119769897.ch11] [Reference Citation Analysis]
23 Sharma S, Parveen R, Chatterji BP. Toxicology of Nanoparticles in Drug Delivery. Curr Pathobiol Rep 2021;:1-12. [PMID: 34840918 DOI: 10.1007/s40139-021-00227-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
24 Zhang T, Shen Y, Ge J, Wang W, Qu L, Li Z. A highly sensitive fluorescence method for the detection of T4 polynucleotide kinase phosphatase based on polydopamine nanotubes. Spectrochim Acta A Mol Biomol Spectrosc 2021;:120594. [PMID: 34776378 DOI: 10.1016/j.saa.2021.120594] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Leyva-González CA, Salas-Treviño D, Contreras-Torres FF, Loera-Arias MJ, Gómez-Tristán CA, Piña-Mendoza EI, García-Rivas GJ, Guillén-Meléndez GA, Montes-de-Oca-Luna R, Saucedo-Cárdenas O, Soto-Domínguez A. Hyaluronate Functionalized Multi-Wall Carbon Nanotubes Loaded with Carboplatin Enhance Cytotoxicity on Human Cancer Cell Lines. Materials (Basel) 2021;14:3622. [PMID: 34209588 DOI: 10.3390/ma14133622] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol 2021;14:85. [PMID: 34059100 DOI: 10.1186/s13045-021-01096-0] [Cited by in Crossref: 88] [Cited by in F6Publishing: 103] [Article Influence: 44.0] [Reference Citation Analysis]
27 Nguyen D, Valet M, Dégardin J, Boucherit L, Illa X, de la Cruz J, Del Corro E, Bousquet J, Garrido JA, Hébert C, Picaud S. Novel Graphene Electrode for Retinal Implants: An in vivo Biocompatibility Study. Front Neurosci 2021;15:615256. [PMID: 33746697 DOI: 10.3389/fnins.2021.615256] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
28 Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. Materials (Basel) 2021;14:1059. [PMID: 33668271 DOI: 10.3390/ma14051059] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
29 Malik D, Joshi R, Kaur H, Prakash A, Medhi B. Future prospects and challenges in cancer drug delivery. Advanced Drug Delivery Systems in the Management of Cancer 2021. [DOI: 10.1016/b978-0-323-85503-7.00035-3] [Reference Citation Analysis]
30 Ambika, Pratap Singh P. Nanocosmetics: Opportunities and Risks. Handbook of Consumer Nanoproducts 2021. [DOI: 10.1007/978-981-15-6453-6_59-1] [Reference Citation Analysis]
31 Fonseca-Gomes J, Loureiro JA, Tanqueiro SR, Mouro FM, Ruivo P, Carvalho T, Sebastião AM, Diógenes MJ, Pereira MC. In vivo Bio-Distribution and Toxicity Evaluation of Polymeric and Lipid-Based Nanoparticles: A Potential Approach for Chronic Diseases Treatment. Int J Nanomedicine 2020;15:8609-21. [PMID: 33177821 DOI: 10.2147/IJN.S267007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]