BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019;14:5753-83. [PMID: 31413573 DOI: 10.2147/IJN.S192779] [Cited by in Crossref: 81] [Cited by in F6Publishing: 82] [Article Influence: 27.0] [Reference Citation Analysis]
Number Citing Articles
1 Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydrate Polymers 2023;300:120266. [DOI: 10.1016/j.carbpol.2022.120266] [Reference Citation Analysis]
2 Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim H, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. Journal of Molecular Liquids 2022;368:120703. [DOI: 10.1016/j.molliq.2022.120703] [Reference Citation Analysis]
3 Sahoo PK, Nayak G, Gupta J, Sahoo NK, Sahu S, Soam A. 3D graphene‐based materials and their potential application on wastewater management. Environmental Quality Mgmt 2022. [DOI: 10.1002/tqem.21946] [Reference Citation Analysis]
4 Zhang Y, Wu Y, Qiao X, Lin T, Wang Y, Wang M. Biomaterial-based strategy for bone tumor therapy and bone defect regeneration: An innovative application option. Front Mater 2022;9:990931. [DOI: 10.3389/fmats.2022.990931] [Reference Citation Analysis]
5 Song J, Hong L, Zou X, Alshawwa H, Zhao Y, Zhao H, Liu X, Si C, Zhang Z. A Self-Supplying H2O2 Modified Nanozyme-Loaded Hydrogel for Root Canal Biofilm Eradication. Int J Mol Sci 2022;23:10107. [PMID: 36077503 DOI: 10.3390/ijms231710107] [Reference Citation Analysis]
6 Singh P, Kotal A, Chowdhury AA. Nanomaterials for Tissue Grafting. Nanomaterials in Clinical Therapeutics 2022. [DOI: 10.1002/9781119857747.ch14] [Reference Citation Analysis]
7 Macdonald AF, Harley-troxell ME, Newby SD, Dhar MS. 3D-Printing Graphene Scaffolds for Bone Tissue Engineering. Pharmaceutics 2022;14:1834. [DOI: 10.3390/pharmaceutics14091834] [Reference Citation Analysis]
8 Zhao Y, Zhao S, Ma Z, Ding C, Chen J, Li J. Chitosan-Based Scaffolds for Facilitated Endogenous Bone Re-Generation. Pharmaceuticals (Basel) 2022;15:1023. [PMID: 36015171 DOI: 10.3390/ph15081023] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Huang C, Chou P, Sher Z, Chen Y, Chen T, Dong G. A Tumor Accelerator Based on Multicomponent Bone Scaffolds and Cancer Cell Homing. Polymers 2022;14:3340. [DOI: 10.3390/polym14163340] [Reference Citation Analysis]
10 Oktay B, Ahlatcıoğlu Özerol E, Sahin A, Gunduz O, Ustundag CB. Production and Characterization of PLA/HA/GO Nanocomposite Scaffold. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202200697] [Reference Citation Analysis]
11 Islam MS, Renner F, Foster K, Oderinde MS, Stefanski K, Mitra S. Enhanced aqueous dissolution of hydrophobic apixaban via direct incorporation of hydrophilic nanographene oxide. Colloids Surf B Biointerfaces 2022;216:112512. [PMID: 35533561 DOI: 10.1016/j.colsurfb.2022.112512] [Reference Citation Analysis]
12 Dalla Colletta A, Pelin M, Sosa S, Fusco L, Prato M, Tubaro A. CARBON-BASED nanomaterials and SKIN: An overview. Carbon 2022;196:683-98. [DOI: 10.1016/j.carbon.2022.05.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Bantun F, Singh R, Alkhanani MF, Almalki AH, Alshammary F, Khan S, Haque S, Srivastava M. Gut microbiome interactions with graphene based nanomaterials: Challenges and opportunities. Sci Total Environ 2022;830:154789. [PMID: 35341865 DOI: 10.1016/j.scitotenv.2022.154789] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Niknam Z, Hosseinzadeh F, Shams F, Fath-Bayati L, Nuoroozi G, Mohammadi Amirabad L, Mohebichamkhorami F, Khakpour Naeimi S, Ghafouri-Fard S, Zali H, Tayebi L, Rasmi Y. Recent advances and challenges in graphene-based nanocomposite scaffolds for tissue engineering application. J Biomed Mater Res A 2022. [PMID: 35762460 DOI: 10.1002/jbm.a.37417] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Barzegar PEF, Mohammadi Z, Sattari S, Beiranvand Z, Salahvarzi M, Rossoli K, Adeli S, Beyranvand S, Maleki S, Kazeminava F, Mousazadeh H, Raisi A, Farjanikish G, Sadegh AB, Shahbazi F, Adeli M. Graphene-MoS2 polyfunctional hybrid hydrogels for the healing of transected Achilles tendon. Biomaterials Advances 2022;137:212820. [DOI: 10.1016/j.bioadv.2022.212820] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Basal O, Ozmen O, Deliormanli AM. Effect of polycaprolactone scaffolds containing different weights of graphene on healing in large osteochondral defect model. J Biomater Sci Polym Ed 2022;33:1123-39. [PMID: 35171753 DOI: 10.1080/09205063.2022.2042035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Deepika B, Gopikrishna A, Girigoswami A, Banu MN, Girigoswami K. Applications of Nanoscaffolds in Tissue Engineering. Curr Pharmacol Rep 2022;8:171-87. [DOI: 10.1007/s40495-022-00284-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Hu C, Chen Z, Tang L, Liu J, Yang J, Lai W, Wu T, Liao S, Zhang X, Pan H, Ruan C. A universally dispersible graphene-based ink modifier facilitates 3D printing of multi-functional tissue-engineered scaffolds. Materials & Design 2022;216:110551. [DOI: 10.1016/j.matdes.2022.110551] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Passaretti P. Graphene Oxide and Biomolecules for the Production of Functional 3D Graphene-Based Materials. Front Mol Biosci 2022;9:774097. [DOI: 10.3389/fmolb.2022.774097] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Chen C, Xi Y, Weng Y. Progress in the Development of Graphene-Based Biomaterials for Tissue Engineering and Regeneration. Materials (Basel) 2022;15:2164. [PMID: 35329615 DOI: 10.3390/ma15062164] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Setia Budi H, Javed Ansari M, Abdalkareem Jasim S, Kamal Abdelbasset W, Bokov D, Fakri Mustafa Y, Najm MA, Kazemnejadi M. Preparation of antibacterial Gel/PCL nanofibers reinforced by dicalcium phosphate-modified graphene oxide with control release of clindamycin for possible application in bone tissue engineering. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.109336] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Filipov E, Angelova L, Aceti D, Marinova V, Karashanova D, Trifonov A, Buchvarov I, Daskalova A. Altering the surface morphology and wettability of chitosan/graphene coatings by femtosecond and nanosecond laser processing. J Phys : Conf Ser 2022;2240:012041. [DOI: 10.1088/1742-6596/2240/1/012041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Qin W, Li C, Liu C, Wu S, Liu J, Ma J, Chen W, Zhao H, Zhao X. 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration. J Biomater Appl 2022;:8853282211067646. [PMID: 35196910 DOI: 10.1177/08853282211067646] [Reference Citation Analysis]
24 Kim G, Lee K, Choi J, An JH. Modified Industrial Three-Dimensional Polylactic Acid Scaffold Cell Chip Promotes the Proliferation and Differentiation of Human Neural Stem Cells. IJMS 2022;23:2204. [DOI: 10.3390/ijms23042204] [Reference Citation Analysis]
25 Sajid M. Nanomaterials: types, properties, recent advances, and toxicity concerns. Current Opinion in Environmental Science & Health 2022;25:100319. [DOI: 10.1016/j.coesh.2021.100319] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
26 Zhovnir SZ, Saveliev MS, Gerasimenko AY, Fedotov AY, Lobzhanidze PV, Komlev VS. Formation of a Biocompatible Electrically Conductive Material Based on Multi-Walled Nanotubes and Calcium Phosphate for Bone Tissue Engineering. 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) 2022. [DOI: 10.1109/elconrus54750.2022.9755700] [Reference Citation Analysis]
27 Alarcón Apablaza J, Lezcano MF, Godoy Sánchez K, Oporto GH, Dias FJ. Optimal Morphometric Characteristics of a Tubular Polymeric Scaffold to Promote Peripheral Nerve Regeneration: A Scoping Review. Polymers 2022;14:397. [DOI: 10.3390/polym14030397] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
28 Behera A. Ultralight Materials. Advanced Materials 2022. [DOI: 10.1007/978-3-030-80359-9_12] [Reference Citation Analysis]
29 Kholghi Eshkalak S, Kowsari E, Ramakrishna S. 3D printing of graphene-based composites and their applications in medicine and health care. Innovations in Graphene-Based Polymer Composites 2022. [DOI: 10.1016/b978-0-12-823789-2.00011-x] [Reference Citation Analysis]
30 Sokolova V, Epple M. Bioceramic nanoparticles in tissue engineering and drug delivery. Tissue Engineering Using Ceramics and Polymers 2022. [DOI: 10.1016/b978-0-12-820508-2.00022-2] [Reference Citation Analysis]
31 Eslahi N, Lotfi R, Zandi N, Mazaheri M, Soleimani F, Simchi A. Graphene-based polymer nanocomposites in biomedical applications. Innovations in Graphene-Based Polymer Composites 2022. [DOI: 10.1016/b978-0-12-823789-2.00016-9] [Reference Citation Analysis]
32 Raja IS, Hong SW, Han D. Reflections and Outlook on Multifaceted Biomedical Applications of Graphene. Multifaceted Biomedical Applications of Graphene 2022. [DOI: 10.1007/978-981-16-4923-3_12] [Reference Citation Analysis]
33 Karmouche A, Siroma T, Siqueira G, Assis T, Silva J. CHALLENGES IN THE USE OF EXTRACORPORAL LIVERS TECHNOLOGIES. Int J Innov Educ Res 2022;10:191-199. [DOI: 10.31686/ijier.vol10.iss1.3605] [Reference Citation Analysis]
34 Vijayan VM, Hernandez-moreno G, Thomas V. Future of nanotechnology in tissue engineering. Tissue Engineering 2022. [DOI: 10.1016/b978-0-12-824064-9.00003-4] [Reference Citation Analysis]
35 Islam H, Hoque ME, Santulli C. Polymer nanocomposites for biomedical applications. Advanced Polymer Nanocomposites 2022. [DOI: 10.1016/b978-0-12-824492-0.00016-7] [Reference Citation Analysis]
36 Ławkowska K, Pokrywczyńska M, Koper K, Kluth LA, Drewa T, Adamowicz J. Application of Graphene in Tissue Engineering of the Nervous System. Int J Mol Sci 2021;23:33. [PMID: 35008456 DOI: 10.3390/ijms23010033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
37 Ravoor J, Thangavel M, Elsen S R. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS Appl Bio Mater 2021;4:8129-58. [PMID: 35005929 DOI: 10.1021/acsabm.1c00949] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 You R, Shi L, Chen S, Liu Q, Zhang L, Yin L, Yang R, Guan YQ. Fabrication of Resveratrol-Loaded Scaffolds and Their Application for Delaying Cell Senescence In Vitro. Macromol Biosci 2021;:e2100440. [PMID: 34919323 DOI: 10.1002/mabi.202100440] [Reference Citation Analysis]
39 Sharifi S, Sharifi H, Akbari A, Dohlman CH, Paschalis EI, Gonzalez-Andrades M, Kong J, Chodosh J. Graphene-Lined Porous Gelatin Glycidyl Methacrylate Hydrogels: Implications for Tissue Engineering. ACS Appl Nano Mater 2021;4:12650-62. [PMID: 35252778 DOI: 10.1021/acsanm.1c03201] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
40 Seok JM, Choe G, Lee SJ, Yoon M, Kim K, Lee JH, Kim WD, Lee JY, Lee K, Park SA. Enhanced three-dimensional printing scaffold for osteogenesis using a mussel-inspired graphene oxide coating. Materials & Design 2021;209:109941. [DOI: 10.1016/j.matdes.2021.109941] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Samara A, Belle BD. Nanomaterials Upscaling Cell Production and Advancing Exosome-Based Stem Cell Therapies. Front Nanotechnol 2021;3:714824. [DOI: 10.3389/fnano.2021.714824] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Ng LY, Chua HS, Ng CY. Incorporation of graphene oxide-based nanocomposite in the polymeric membrane for water and wastewater treatment: A review on recent development. Journal of Environmental Chemical Engineering 2021;9:105994. [DOI: 10.1016/j.jece.2021.105994] [Cited by in Crossref: 16] [Cited by in F6Publishing: 22] [Article Influence: 16.0] [Reference Citation Analysis]
43 Zhang L, Ma XJ, Fei YY, Han HT, Xu J, Cheng L, Li X. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol Ther 2021;:108004. [PMID: 34597754 DOI: 10.1016/j.pharmthera.2021.108004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
44 Shahzad A, Oh JM, Azam M, Iqbal J, Hussain S, Miran W, Rasool K. Advances in the Synthesis and Application of Anti-Fouling Membranes Using Two-Dimensional Nanomaterials. Membranes (Basel) 2021;11:605. [PMID: 34436368 DOI: 10.3390/membranes11080605] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Apablaza JA, Lezcano MF, Lopez Marquez A, Godoy Sánchez K, Oporto GH, Dias FJ. Main Morphological Characteristics of Tubular Polymeric Scaffolds to Promote Peripheral Nerve Regeneration-A Scoping Review. Polymers (Basel) 2021;13:2563. [PMID: 34372166 DOI: 10.3390/polym13152563] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
46 Zhao S, Cui W, Rajendran NK, Su F, Rajan M. Investigations of gold nanoparticles-mediated carbon nanotube reinforced hydroxyapatite composite for bone regenerations. Journal of Saudi Chemical Society 2021;25:101261. [DOI: 10.1016/j.jscs.2021.101261] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
47 Azizi M, Kalantar M, Nezafati N, Zamanian A. Fabrication, characterization, and in vitro bioactivity evaluation of freeze-cast highly porous hardystonite ceramic reinforced by graphene oxide as a novel bone scaffold. J Aust Ceram Soc 2021;57:947-960. [DOI: 10.1007/s41779-021-00601-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Cheng L, Suresh K S, He H, Rajput RS, Feng Q, Ramesh S, Wang Y, Krishnan S, Ostrovidov S, Camci-Unal G, Ramalingam M. 3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives. Int J Nanomedicine 2021;16:4289-319. [PMID: 34211272 DOI: 10.2147/IJN.S311001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
49 Nurazzi NM, Abdullah N, Demon SZN, Halim NA, Azmi AFM, Knight VF, Mohamad IS. The frontiers of functionalized graphene-based nanocomposites as chemical sensors. Nanotechnology Reviews 2021;10:330-69. [DOI: 10.1515/ntrev-2021-0030] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
50 Geetha Bai R, Muthoosamy K, Tuvikene R, Nay Ming H, Manickam S. Highly Sensitive Electrochemical Biosensor Using Folic Acid-Modified Reduced Graphene Oxide for the Detection of Cancer Biomarker. Nanomaterials (Basel) 2021;11:1272. [PMID: 34066073 DOI: 10.3390/nano11051272] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
51 Sarkar P, Ghosal K, Chakraborty D, Sarkar K. Biocompatibility and biomedical applications of various carbon-based materials. Handbook of Carbon-Based Nanomaterials 2021. [DOI: 10.1016/b978-0-12-821996-6.00015-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Bai RG, Tuvikene R. Biomedical applications of graphene. Handbook of Carbon-Based Nanomaterials 2021. [DOI: 10.1016/b978-0-12-821996-6.00013-0] [Reference Citation Analysis]
53 Kralj M, Supina A, Čapeta D, Sović I, Halasz I. Mechanochemical oxidation of graphite for graphene-hydrogel applications: Pitfalls and benefits. Materialia 2020;14:100908. [DOI: 10.1016/j.mtla.2020.100908] [Reference Citation Analysis]
54 Gholami A, Hashemi SA, Yousefi K, Mousavi SM, Chiang W, Ramakrishna S, Mazraedoost S, Alizadeh A, Omidifar N, Behbudi G, Babapoor A, Li X. 3D Nanostructures for Tissue Engineering, Cancer Therapy, and Gene Delivery. Journal of Nanomaterials 2020;2020:1-24. [DOI: 10.1155/2020/1852946] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 15.5] [Reference Citation Analysis]
55 Yang G, Mahadik B, Mollot T, Pinsky J, Jones A, Robinson A, Najafali D, Rivkin D, Katsnelson J, Piard C, Fisher JP. Engineered Liver Tissue Culture in an In Vitro Tubular Perfusion System. Tissue Eng Part A 2020;26:1369-77. [PMID: 33054685 DOI: 10.1089/ten.TEA.2020.0213] [Reference Citation Analysis]
56 Aydin A, Cebi G, Demirtas ZE, Erkus H, Kucukay A, Ok M, Sakalli L, Alpdagtas S, Gunduz O, Ustundag CB. Combating COVID-19 with tissue engineering: a review. Emergent Mater 2020;:1-21. [PMID: 33235976 DOI: 10.1007/s42247-020-00138-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
57 Zhang T, Tremblay PL. Graphene: An Antibacterial Agent or a Promoter of Bacterial Proliferation? iScience 2020;23:101787. [PMID: 33294795 DOI: 10.1016/j.isci.2020.101787] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
58 Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. Nanomaterials (Basel) 2020;10:E2019. [PMID: 33066127 DOI: 10.3390/nano10102019] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
59 Wychowaniec JK, Litowczenko J, Tadyszak K, Natu V, Aparicio C, Peplińska B, Barsoum MW, Otyepka M, Scheibe B. Unique cellular network formation guided by heterostructures based on reduced graphene oxide - Ti3C2Tx MXene hydrogels. Acta Biomater 2020;115:104-15. [PMID: 32795646 DOI: 10.1016/j.actbio.2020.08.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
60 Mudusu D, Nandanapalli KR, Lee S, Hahn YB. Recent advances in graphene monolayers growth and their biological applications: A review. Adv Colloid Interface Sci 2020;283:102225. [PMID: 32777519 DOI: 10.1016/j.cis.2020.102225] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
61 Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics 2020;12:E735. [PMID: 32764269 DOI: 10.3390/pharmaceutics12080735] [Cited by in Crossref: 218] [Cited by in F6Publishing: 246] [Article Influence: 109.0] [Reference Citation Analysis]
62 N'deh KPU, Kim GJ, Chung KH, Shin JS, Lee KS, Choi JW, Lee KJ, An JH. Surface-Modified Industrial Acrylonitrile Butadiene Styrene 3D Scaffold Fabrication by Gold Nanoparticle for Drug Screening. Nanomaterials (Basel) 2020;10:E529. [PMID: 32183472 DOI: 10.3390/nano10030529] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
63 Xing F, Li L, Zhou C, Long C, Wu L, Lei H, Kong Q, Fan Y, Xiang Z, Zhang X. Regulation and Directing Stem Cell Fate by Tissue Engineering Functional Microenvironments: Scaffold Physical and Chemical Cues. Stem Cells Int 2019;2019:2180925. [PMID: 31949436 DOI: 10.1155/2019/2180925] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]