BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang J, Tang H, Liu Z, Chen B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int J Nanomedicine 2017;12:8483-93. [PMID: 29238188 DOI: 10.2147/IJN.S148359] [Cited by in Crossref: 91] [Cited by in F6Publishing: 93] [Article Influence: 18.2] [Reference Citation Analysis]
Number Citing Articles
1 Ying N, Lin X, Xie M, Zeng D. Effect of surface ligand modification on the properties of anti-tumor nanocarrier. Colloids and Surfaces B: Biointerfaces 2022;220:112944. [DOI: 10.1016/j.colsurfb.2022.112944] [Reference Citation Analysis]
2 Jin Z, Zhan Y, Zheng L, Wei Q, Xu S, Qin Z. Cannabidiol-loaded poly lactic-co-glycolic acid nanoparticles with improved bioavailability as a potential for osteoarthritis therapeutic.. [DOI: 10.21203/rs.3.rs-2304218/v1] [Reference Citation Analysis]
3 Dhiman V, Jangra M, Kumar S, Choudhary P, Chand S, Kumari A, Sharma R, Kondal N. Structural and defect-related optical characteristics of Viola odorata extract mediated ZnO. Materials Today: Proceedings 2022. [DOI: 10.1016/j.matpr.2022.11.106] [Reference Citation Analysis]
4 Rani V, Venkatesan J, Prabhu A. Liposomes- A promising strategy for drug delivery in anticancer applications. Journal of Drug Delivery Science and Technology 2022;76:103739. [DOI: 10.1016/j.jddst.2022.103739] [Reference Citation Analysis]
5 Chircov C, Stefan Vasile B. New Approaches in Synthesis and Characterization Methods of Iron Oxide Nanoparticles. Iron Oxide Nanoparticles 2022. [DOI: 10.5772/intechopen.101784] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Lakkakula J, Roy A, Krishnamoorthy K, Alghamdi S, Almehmadi M, Gujarathi P, Pansare P, Allahyani M, Abdulaziz O, Velhal K, Khatun MCS, Hossain MJ, R L. Alginate-Based Nanosystems for Therapeutic Applications. Journal of Nanomaterials 2022;2022:1-11. [DOI: 10.1155/2022/6182815] [Reference Citation Analysis]
7 Rahimi H, Abdollahzade A, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Targeted delivery of doxorubicin to tumor cells using engineered circular bivalent aptamer. Journal of Drug Delivery Science and Technology 2022;75:103692. [DOI: 10.1016/j.jddst.2022.103692] [Reference Citation Analysis]
8 Feuser PE, De Pieri E, Oliveira ME, Cordeiro AP, Cercena R, Hermes de Araújo PH, Dal Bó AG, Machado-de-ávila RA. Cisplatin and paclitaxel-loaded liposomes induced cervical cancer (HeLa) cell death with multiple copies of human papillomavirus by apoptosis and decreased their cytotoxic effect on non-tumor cells. Journal of Drug Delivery Science and Technology 2022;73:103457. [DOI: 10.1016/j.jddst.2022.103457] [Reference Citation Analysis]
9 Akhtar N, Wu P, Chen CL, Chang W, Liu R, Wu CT, Girigoswami A, Chattopadhyay S. Radiolabeled Human Protein-Functionalized Upconversion Nanoparticles for Multimodal Cancer Imaging. ACS Appl Nano Mater 2022;5:7051-62. [DOI: 10.1021/acsanm.2c01016] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 An T, Yin H, Lu Y, Liu F. The Emerging Potential of Parthenolide Nanoformulations in Tumor Therapy. Drug Des Devel Ther 2022;16:1255-72. [PMID: 35517982 DOI: 10.2147/DDDT.S355059] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Rebanda MM, Bettini S, Blasi L, Gaballo A, Ragusa A, Quarta A, Piccirillo C. Poly(l-lactide-co-caprolactone-co-glycolide)-Based Nanoparticles as Delivery Platform: Effect of the Surfactants on Characteristics and Delivery Efficiency. Nanomaterials (Basel) 2022;12:1550. [PMID: 35564258 DOI: 10.3390/nano12091550] [Reference Citation Analysis]
12 Kahali P, Montazer M, Kamali Dolatabadi M. Nanomodification of polyester fabric surface: Higher performances of synthesized CuFe2O4 comparing with CuO and Fe3O4 NPs. Materials Chemistry and Physics 2022;283:126039. [DOI: 10.1016/j.matchemphys.2022.126039] [Reference Citation Analysis]
13 Priya K, Das D, Singh S, Rai G. Green Synthesis of Silver Nanoparticles Using Musa balbisiana and Their Cytotoxic Effect on HL-60 and SiHa Cancer Cells Through Clathrin-Mediated Endocytosis. BioNanoSci . [DOI: 10.1007/s12668-022-00955-5] [Reference Citation Analysis]
14 Singh P, Jaiswal A. Investigating the Performance of Near‐Infrared Light Responsive Monometallic Gold and Bimetallic Gold‐Palladium Nanorattles towards Plasmonic Photothermal Therapy. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202103877] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Macchi S, Jalihal A, Hooshmand N, Zubair M, Jenkins S, Alwan N, El-Sayed M, Ali N, Griffin RJ, Siraj N. Enhanced photothermal heating and combination therapy of NIR dye via conversion to self-assembled ionic nanomaterials. J Mater Chem B 2022. [PMID: 35043823 DOI: 10.1039/d1tb02280f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Rani V, Venkatesan J, Prabhu A. Gold nanocarriers in tumor diagnosis, imaging, drug delivery, and therapy. Industrial Applications of Nanocrystals 2022. [DOI: 10.1016/b978-0-12-824024-3.00020-8] [Reference Citation Analysis]
17 Ghouri MD, Saleem J, Ren J, Liu J, Umer A, Cai R, Chen C. Nanomaterials‐Mediated Structural and Physiological Modulation of Blood Brain Barrier for Therapeutic Purposes. Adv Materials Inter 2022;9:2101391. [DOI: 10.1002/admi.202101391] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Della Sala F, Silvestri T, Borzacchiello A, Mayol L, Ambrosio L, Biondi M. Hyaluronan-coated nanoparticles for active tumor targeting: Influence of polysaccharide molecular weight on cell uptake. Colloids Surf B Biointerfaces 2021;210:112240. [PMID: 34864635 DOI: 10.1016/j.colsurfb.2021.112240] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
19 Deng S, Wu D, Li L, Li J, Xu Y. TBHQ attenuates ferroptosis against 5-fluorouracil-induced intestinal epithelial cell injury and intestinal mucositis via activation of Nrf2. Cell Mol Biol Lett 2021;26:48. [PMID: 34794379 DOI: 10.1186/s11658-021-00294-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Kaňa A, Loula M, Mestek O. Controlled preparation of arsenic nanoparticles. J Nanopart Res 2021;23. [DOI: 10.1007/s11051-021-05356-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Tinajero-Díaz E, Salado-Leza D, Gonzalez C, Martínez Velázquez M, López Z, Bravo-Madrigal J, Knauth P, Flores-Hernández FY, Herrera-Rodríguez SE, Navarro RE, Cabrera-Wrooman A, Krötzsch E, Carvajal ZYG, Hernández-Gutiérrez R. Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications. Pharmaceutics 2021;13:1719. [PMID: 34684012 DOI: 10.3390/pharmaceutics13101719] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
22 Strong TA, Pelaez D. ACE2-cytomimetic particles restrict SARS-Cov-2 spike protein binding to cellular targets. Biotechnol Rep (Amst) 2021;32:e00681. [PMID: 34611521 DOI: 10.1016/j.btre.2021.e00681] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Barani M, Reza Hajinezhad M, Sargazi S, Zeeshan M, Rahdar A, Pandey S, Khatami M, Zargari F. Simulation, In Vitro, and In Vivo Cytotoxicity Assessments of Methotrexate-Loaded pH-Responsive Nanocarriers. Polymers (Basel) 2021;13:3153. [PMID: 34578054 DOI: 10.3390/polym13183153] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
24 Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S, Song M. Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy. Int J Mol Sci 2021;22:9118. [PMID: 34502028 DOI: 10.3390/ijms22179118] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
25 Mohammadkarimi V, Azarpira N, Ghanbarinasab Z, Shiri P, Dehghani FS, Nakhostin-ansari A, Tayyebi-khorrami F, Atapour A, Amani AM, Campos J. Synthesis of Silver-Doxycycline Complex Nanoparticles and Their Biological Evaluation on MCF-7 Cell Line of the Breast Cancer. Journal of Chemistry 2021;2021:1-8. [DOI: 10.1155/2021/9944214] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Crapanzano R, Secchi V, Villa I. Co-Adjuvant Nanoparticles for Radiotherapy Treatments of Oncological Diseases. Applied Sciences 2021;11:7073. [DOI: 10.3390/app11157073] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
27 Guleria A, Baby CM, Tomy A, Maurya DK, Neogy S, Debnath AK, Adhikari S. Size Tuning, Phase Stabilization, and Anticancer Efficacy of Amorphous Selenium Nanoparticles: Effect of Ion-Pair Interaction, −OH Functionalization, and Reuse of RTILs as Host Matrix. J Phys Chem C 2021;125:13933-45. [DOI: 10.1021/acs.jpcc.1c02894] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
28 Barabadi H, Mojab F, Vahidi H, Marashi B, Talank N, Hosseini O, Saravanan M. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorganic Chemistry Communications 2021;129:108647. [DOI: 10.1016/j.inoche.2021.108647] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 26.0] [Reference Citation Analysis]
29 Zhao S, Yu Z, Zhang Y, Lin M, Villarreal-gómez LJ. Effects of Arsenic Trioxide-Loaded PLGA Nanoparticles on Proliferation and Migration of Human Vascular Smooth Muscle Cells. Journal of Nanomaterials 2021;2021:1-8. [DOI: 10.1155/2021/5575370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021;173:306-30. [PMID: 33798642 DOI: 10.1016/j.addr.2021.03.018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 22.0] [Reference Citation Analysis]
31 Cardoso CO, Tolentino S, Gratieri T, Cunha-Filho M, Lopez RFV, Gelfuso GM. Topical Treatment for Scarring and Non-Scarring Alopecia: An Overview of the Current Evidence. Clin Cosmet Investig Dermatol 2021;14:485-99. [PMID: 34012282 DOI: 10.2147/CCID.S284435] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
32 Ginghină O, Hudiță A, Zaharia C, Tsatsakis A, Mezhuev Y, Costache M, Gălățeanu B. Current Landscape in Organic Nanosized Materials Advances for Improved Management of Colorectal Cancer Patients. Materials (Basel) 2021;14:2440. [PMID: 34066710 DOI: 10.3390/ma14092440] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
33 Gulla S, Lomada D, Araveti PB, Srivastava A, Murikinati MK, Reddy KR, Inamuddin, Reddy MC, Altalhi T. Titanium dioxide nanotubes conjugated with quercetin function as an effective anticancer agent by inducing apoptosis in melanoma cells. J Nanostruct Chem 2021;11:721-34. [DOI: 10.1007/s40097-021-00396-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
34 Jeevanandam J, Danquah MK, Pan S. Plant-Derived Nanobiomaterials as a Potential Next Generation Dental Implant Surface Modifier. Front Mater 2021;8:666202. [DOI: 10.3389/fmats.2021.666202] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, Karimi M, Webster TJ, Hamblin MR, Mostafavi E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine 2021;16:1681-706. [PMID: 33688185 DOI: 10.2147/IJN.S299448] [Cited by in Crossref: 57] [Cited by in F6Publishing: 66] [Article Influence: 57.0] [Reference Citation Analysis]
36 Daunys S, Janonienė A, Januškevičienė I, Paškevičiūtė M, Petrikaitė V. 3D Tumor Spheroid Models for In Vitro Therapeutic Screening of Nanoparticles. Adv Exp Med Biol 2021;1295:243-70. [PMID: 33543463 DOI: 10.1007/978-3-030-58174-9_11] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
37 Madamsetty VS, Mukherjee A, Paul M. Bioinspired nanoparticles-based drug delivery systems for cancer theranostics. Biogenic Nanoparticles for Cancer Theranostics 2021. [DOI: 10.1016/b978-0-12-821467-1.00008-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Mishra M, Patole S, Mohapatra H. Nanoparticles: Powerful Tool to Mitigate Antibiotic Resistance. Sustainable Agriculture Reviews 2021. [DOI: 10.1007/978-3-030-58259-3_6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Qorri B, Decarlo A, Mellon M, Szewczuk MR. Drug delivery systems in cancer therapy. Drug Delivery Devices and Therapeutic Systems 2021. [DOI: 10.1016/b978-0-12-819838-4.00016-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Torres-Pérez SA, Torres-Pérez CE, Pedraza-Escalona M, Pérez-Tapia SM, Ramón-Gallegos E. Glycosylated Nanoparticles for Cancer-Targeted Drug Delivery. Front Oncol 2020;10:605037. [PMID: 33330106 DOI: 10.3389/fonc.2020.605037] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
41 Singhavi DJ, Khan S. Application of Nanotechnology in Transdermal Drug Delivery. Nanobiotechnology in Diagnosis, Drug Delivery, and Treatment 2020. [DOI: 10.1002/9781119671732.ch6] [Reference Citation Analysis]
42 Haque ST, Islam RA, Gan SH, Chowdhury EH. Characterization and Evaluation of Bone-Derived Nanoparticles as a Novel pH-Responsive Carrier for Delivery of Doxorubicin into Breast Cancer Cells. Int J Mol Sci 2020;21:E6721. [PMID: 32937817 DOI: 10.3390/ijms21186721] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
43 Safari M, Amani A, Adebileje T, Ai J, Rezayat SM, Ghanbari H, Faridi-majidi R. Preparation of All-Trans-Retinoic Acid-Loaded mPEG-PLGA Nanoparticles Using Microfluidic Flow-Focusing Device for Controlled Drug Delivery. NANO 2020;15:2050101. [DOI: 10.1142/s1793292020501015] [Reference Citation Analysis]
44 de Arcocha-torres M, Quincoces G, Martínez-lópez A, Erhard A, Collantes M, Martínez-rodríguez I, Ecay M, Banzo I, Irache J, Peñuelas I. Preparation, radiolabeling with 99mTc and 67Ga and biodistribution studies of albumin nanoparticles coated with polymers. Revista Española de Medicina Nuclear e Imagen Molecular (English Edition) 2020;39:225-32. [DOI: 10.1016/j.remnie.2020.04.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Gondhowiardjo SA, Aman RA, Setyawan A, Handoko, Ramli I. Validation of recursive partitioning analysis, graded prognostic assessment and basic score for brain metastases as prognostic indices among patients with brain metastases treated with radiotherapy in Indonesia. J Radiother Pract 2020;19:145-149. [DOI: 10.1017/s1460396919000463] [Reference Citation Analysis]
46 Bhattacharya DS, Svechkarev D, Bapat A, Patil P, Hollingsworth MA, Mohs AM. Sulfation modulates the targeting properties of hyaluronic acid to P-selectin and CD44. ACS Biomater Sci Eng 2020;6:3585-98. [PMID: 32617404 DOI: 10.1021/acsbiomaterials.0c00115] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
47 de Arcocha-Torres M, Quincoces G, Martínez-López AL, Erhard A, Collantes M, Martínez-Rodríguez I, Ecay M, Banzo I, Irache JM, Peñuelas I. Preparation, radiolabeling with 99mTc and 67Ga and biodistribution studies of albumin nanoparticles covered with polymers. Rev Esp Med Nucl Imagen Mol (Engl Ed) 2020;39:225-32. [PMID: 32201272 DOI: 10.1016/j.remn.2020.02.002] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
48 Seynhaeve ALB, Amin M, Haemmerich D, van Rhoon GC, Ten Hagen TLM. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020;163-164:125-44. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Cited by in Crossref: 70] [Cited by in F6Publishing: 78] [Article Influence: 35.0] [Reference Citation Analysis]
49 Johnson DL, Wang Y, Stealey ST, Alexander AK, Kaltchev MG, Chen J, Zhang W. Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity. Micro & Nano Letters 2020;15:110-113. [DOI: 10.1049/mnl.2019.0528] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Choi SW, Kim J. Recent Progress in Autocatalytic Ceria Nanoparticles-Based Translational Research on Brain Diseases. ACS Appl Nano Mater 2020;3:1043-62. [DOI: 10.1021/acsanm.9b02243] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
51 Das S, Das MK, Deka T, Singha LR, Das P. Nanomedicines and Nanodrug Delivery Systems: Trends and Perspectives. Nano Medicine and Nano Safety 2020. [DOI: 10.1007/978-981-15-6255-6_6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
52 Costa E, Sousa A, Cabrita AS, Reis CP, Figueiredo IV. A new approach for cancer treatment: from specific induction of breast cancer to innovative gold-nanoparticle mediated thermal therapies. Nanomedicines for Breast Cancer Theranostics 2020. [DOI: 10.1016/b978-0-12-820016-2.00012-4] [Reference Citation Analysis]
53 Ghiciuc CM, Beatrice Ungureanu L, Stanescu RS, Vasile Lupusoru R. Nanoparticles in the Therapy of Breast Cancer. 2019 E-Health and Bioengineering Conference (EHB) 2019. [DOI: 10.1109/ehb47216.2019.8970021] [Reference Citation Analysis]
54 Sharma R, Sharma PK, Malviya R. Modulation of Shape and Size-Dependent Characteristics of Nanoparticles. CNANOM 2019;9:210-215. [DOI: 10.2174/2468187309666190301153651] [Reference Citation Analysis]
55 Jesus S, Schmutz M, Som C, Borchard G, Wick P, Borges O. Hazard Assessment of Polymeric Nanobiomaterials for Drug Delivery: What Can We Learn From Literature So Far. Front Bioeng Biotechnol 2019;7:261. [PMID: 31709243 DOI: 10.3389/fbioe.2019.00261] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
56 Sarkar P, Bhattacharya S, Pal TK. Application of statistical design to evaluate critical process parameters and optimize formulation technique of polymeric nanoparticles. R Soc Open Sci 2019;6:190896. [PMID: 31417765 DOI: 10.1098/rsos.190896] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
57 Agrahari V, Burnouf PA, Burnouf T, Agrahari V. Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv Drug Deliv Rev 2019;148:146-80. [PMID: 30797956 DOI: 10.1016/j.addr.2019.02.008] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 16.0] [Reference Citation Analysis]
58 Marvin CM, Ding S, White RE, Orlova N, Wang Q, Zywot EM, Vickerman BM, Harr L, Tarrant TK, Dayton PA, Lawrence DS. On Command Drug Delivery via Cell-Conveyed Phototherapeutics. Small 2019;15:e1901442. [PMID: 31353802 DOI: 10.1002/smll.201901442] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
59 Novoselova MV, German SV, Sindeeva OA, Kulikov OA, Minaeva OV, Brodovskaya EP, Ageev VP, Zharkov MN, Pyataev NA, Sukhorukov GB, Gorin DA. Submicron-Sized Nanocomposite Magnetic-Sensitive Carriers: Controllable Organ Distribution and Biological Effects. Polymers (Basel) 2019;11:E1082. [PMID: 31242626 DOI: 10.3390/polym11061082] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
60 Bullo S, Buskaran K, Baby R, Dorniani D, Fakurazi S, Hussein MZ. Dual Drugs Anticancer Nanoformulation using Graphene Oxide-PEG as Nanocarrier for Protocatechuic Acid and Chlorogenic Acid. Pharm Res 2019;36:91. [PMID: 31020429 DOI: 10.1007/s11095-019-2621-8] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 9.7] [Reference Citation Analysis]
61 Huang J, Huang W, Zhang Z, Lin X, Lin H, Peng L, Chen T. Highly Uniform Synthesis of Selenium Nanoparticles with EGFR Targeting and Tumor Microenvironment-Responsive Ability for Simultaneous Diagnosis and Therapy of Nasopharyngeal Carcinoma. ACS Appl Mater Interfaces 2019;11:11177-93. [PMID: 30821437 DOI: 10.1021/acsami.8b22678] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 15.7] [Reference Citation Analysis]
62 Bharathala S, Sharma P. Biomedical Applications of Nanoparticles. Nanotechnology in Modern Animal Biotechnology 2019. [DOI: 10.1016/b978-0-12-818823-1.00008-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
63 Argenziano M, Lombardi C, Ferrara B, Trotta F, Caldera F, Blangetti M, Koltai H, Kapulnik Y, Yarden R, Gigliotti L, Dianzani U, Dianzani C, Prandi C, Cavalli R. Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget 2018;9:35813-29. [PMID: 30533197 DOI: 10.18632/oncotarget.26287] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
64 Tao X, Tao T, Wen Y, Yi J, He L, Huang Z, Nie Y, Yao X, Wang Y, He C, Yang X. Novel Delivery of Mitoxantrone with Hydrophobically Modified Pullulan Nanoparticles to Inhibit Bladder Cancer Cell and the Effect of Nano-drug Size on Inhibition Efficiency. Nanoscale Res Lett 2018;13:345. [PMID: 30377872 DOI: 10.1186/s11671-018-2769-x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
65 Barone FC, Marcinkiewicz C, Li J, Sternberg M, Lelkes PI, Dikin DA, Bergold PJ, Gerstenhaber JA, Feuerstein G. Pilot study on biocompatibility of fluorescent nanodiamond-(NV)-Z~800 particles in rats: safety, pharmacokinetics, and bio-distribution (part III). Int J Nanomedicine 2018;13:5449-68. [PMID: 30271140 DOI: 10.2147/IJN.S171117] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]