BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xie Y, Liu D, Cai C, Chen X, Zhou Y, Wu L, Sun Y, Dai H, Kong X, Liu P. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells. Int J Nanomedicine 2016;11:3557-70. [PMID: 27536098 DOI: 10.2147/IJN.S105575] [Cited by in Crossref: 39] [Cited by in F6Publishing: 45] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Ahmad V, Ansari MO. Antimicrobial Activity of Graphene-Based Nanocomposites: Synthesis, Characterization, and Their Applications for Human Welfare. Nanomaterials (Basel) 2022;12. [PMID: 36432288 DOI: 10.3390/nano12224002] [Reference Citation Analysis]
2 Yousefi AM, Pourbagheri-Sigaroodi A, Fakhroueian Z, Salari S, Fateh K, Momeny M, Bashash D. Anticancer Effects of ZnO/CNT@Fe(3)O(4) in AML-Derived KG1 Cells: Shedding Light on Promising Potential of Metal Nanoparticles in Acute Leukemia. Int J Hematol Oncol Stem Cell Res 2022;16:140-50. [PMID: 36694699 DOI: 10.18502/ijhoscr.v16i3.10136] [Reference Citation Analysis]
3 Sanati M, Afshari AR, Kesharwani P, Sukhorukov VN, Sahebkar A. Recent trends in the application of nanoparticles in cancer therapy: The involvement of oxidative stress. J Control Release 2022;348:287-304. [PMID: 35644289 DOI: 10.1016/j.jconrel.2022.05.035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
4 Pawlik P, Blasiak B, Depciuch J, Pruba M, Kitala D, Vorobyova S, Stec M, Bushinsky M, Konakov A, Baran J, Fedotova J, Ivashkevich O, Parlinska-wojtan M, Maximenko A. Application of iron-based magnetic nanoparticles stabilized with triethanolammonium oleate for theranostics. J Mater Sci. [DOI: 10.1007/s10853-021-06244-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Morais PC, Silva DC. Mathematical Modeling for an MTT Assay in Fluorine-Containing Graphene Quantum Dots. Nanomaterials (Basel) 2022;12:413. [PMID: 35159758 DOI: 10.3390/nano12030413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 El-shora HM, Khateb AM, Darwish DB, El-sharkawy RM. Thiolation of Myco-Synthesized Fe3O4-NPs: A Novel Promising Tool for Penicillium expansium Laccase Immobilization to Decolorize Textile Dyes and as an Application for Anticancer Agent. JoF 2022;8:71. [DOI: 10.3390/jof8010071] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Vardakas P, Kyriazis ID, Kourti M, Skaperda Z, Tekos F, Kouretas D. Oxidative stress–mediated nanotoxicity. Advanced Nanomaterials and Their Applications in Renewable Energy 2022. [DOI: 10.1016/b978-0-323-99877-2.00012-6] [Reference Citation Analysis]
8 Janik-Olchawa N, Drozdz A, Ryszawy D, Pudelek M, Planeta K, Setkowicz Z, Sniegocki M, Wytrwal-Sarna M, Gajewska M, Chwiej J. The influence of IONPs core size on their biocompatibility and activity in in vitro cellular models. Sci Rep 2021;11:21808. [PMID: 34750434 DOI: 10.1038/s41598-021-01237-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Verma SK, Thirumurugan A, Panda PK, Patel P, Nandi A, Jha E, Prabakaran K, Udayabhaskar R, Mangalaraja RV, Mishra YK, Akbari-Fakhrabadi A, Morel MJ, Suar M, Ahuja R. Altered electrochemical properties of iron oxide nanoparticles by carbon enhance molecular biocompatibility through discrepant atomic interaction. Mater Today Bio 2021;12:100131. [PMID: 34622194 DOI: 10.1016/j.mtbio.2021.100131] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Pérez-Garnes M, Morales V, Sanz R, García-Muñoz RA. Cytostatic and Cytotoxic Effects of Hollow-Shell Mesoporous Silica Nanoparticles Containing Magnetic Iron Oxide. Nanomaterials (Basel) 2021;11:2455. [PMID: 34578771 DOI: 10.3390/nano11092455] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
11 Yu S, Zhang H, Zhang S, Zhong M, Fan H. Ferrite Nanoparticles-Based Reactive Oxygen Species-Mediated Cancer Therapy. Front Chem 2021;9:651053. [PMID: 33987168 DOI: 10.3389/fchem.2021.651053] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
12 Wang YJ, Lin PY, Hsieh SL, Kirankumar R, Lin HY, Li JH, Chen YT, Wu HM, Hsieh S. Utilizing Edible Agar as a Carrier for Dual Functional Doxorubicin-Fe3O4 Nanotherapy Drugs. Materials (Basel) 2021;14:1824. [PMID: 33917109 DOI: 10.3390/ma14081824] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Tasso M, Ghilini F, Cathcarth M, Picco AS. Toxicity Assessment of Nanoferrites. Topics in Mining, Metallurgy and Materials Engineering 2021. [DOI: 10.1007/978-3-030-79960-1_9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Zhang L, Liu L, Xiao A, Huang S, Li D. Screening and analysis of xanthine oxidase inhibitors in jute leaves and their protective effects against hydrogen peroxide-induced oxidative stress in cells. Open Chemistry 2020;18:1481-94. [DOI: 10.1515/chem-2020-0178] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Bag J, Mukherjee S, Ghosh SK, Das A, Mukherjee A, Sahoo JK, Tung KS, Sahoo H, Mishra M. Fe3O4 coated guargum nanoparticles as non-genotoxic materials for biological application. Int J Biol Macromol 2020;165:333-45. [PMID: 32980413 DOI: 10.1016/j.ijbiomac.2020.09.144] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
16 Jia FJ, Han Z, Ma JH, Jiang SQ, Zhao XM, Ruan H, Xie WD, Li X. Involvement of Reactive Oxygen Species in the Hepatorenal Toxicity of Actinomycin V In Vitro and In Vivo. Mar Drugs 2020;18:E428. [PMID: 32824227 DOI: 10.3390/md18080428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
17 Almasi T, Gholipour N, Akhlaghi M, Mokhtari Kheirabadi A, Mazidi SM, Hosseini SH, Geramifar P, Beiki D, Rostampour N, Shahbazi Gahrouei D. Development of Ga-68 radiolabeled DOTA functionalized and acetylated PAMAM dendrimer-coated iron oxide nanoparticles as PET/MR dual-modal imaging agent. International Journal of Polymeric Materials and Polymeric Biomaterials 2021;70:1077-89. [DOI: 10.1080/00914037.2020.1785451] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
18 Zhou M, Xie P, Gong J, Wu Y, Pei L, Chen J, Xu F. Mechanistic investigation of cellular internalization routes of polymeric particles on breast cancer cells: relevance for drug delivery applications. Appl Nanosci 2020;10:2239-2254. [DOI: 10.1007/s13204-020-01376-0] [Reference Citation Analysis]
19 Wang HT, Chou PC, Wu PH, Lee CM, Fan KH, Chang WJ, Lee SY, Huang HM. Physical and Biological Evaluation of Low-Molecular-Weight Hyaluronic Acid/Fe3O4 Nanoparticle for Targeting MCF7 Breast Cancer Cells. Polymers (Basel) 2020;12:E1094. [PMID: 32403369 DOI: 10.3390/polym12051094] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
20 Ye P, Ye Y, Chen X, Zou H, Zhou Y, Zhao X, Chang Z, Han B, Kong X. Ultrasmall Fe 3 O 4 nanoparticles induce S-phase arrest and inhibit cancer cells proliferation. Nanotechnology Reviews 2020;9:61-9. [DOI: 10.1515/ntrev-2020-0006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
21 Wahab R, Ahmad J, Ahmad N. Application of multi-dimensional (0D, 1D, 2D) nanostructures for the cytological evaluation of cancer cells and their bacterial response. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;583:123953. [DOI: 10.1016/j.colsurfa.2019.123953] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
22 Ansari SAMK, Ficiarà E, Ruffinatti FA, Stura I, Argenziano M, Abollino O, Cavalli R, Guiot C, D'Agata F. Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Functionalization for Biomedical Applications in the Central Nervous System. Materials (Basel) 2019;12:E465. [PMID: 30717431 DOI: 10.3390/ma12030465] [Cited by in Crossref: 113] [Cited by in F6Publishing: 115] [Article Influence: 28.3] [Reference Citation Analysis]
23 Mao Z, Li Y, Dong T, Zhang L, Zhang Y, Li S, Hu H, Sun C, Xia Y. Exposure to Titanium Dioxide Nanoparticles During Pregnancy Changed Maternal Gut Microbiota and Increased Blood Glucose of Rat. Nanoscale Res Lett 2019;14:26. [PMID: 30656437 DOI: 10.1186/s11671-018-2834-5] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 8.5] [Reference Citation Analysis]
24 Gokduman K, Bestepe F, Li L, Yarmush ML, Usta OB. Dose-, treatment- and time-dependent toxicity of superparamagnetic iron oxide nanoparticles on primary rat hepatocytes. Nanomedicine (Lond) 2018;13:1267-84. [PMID: 29949471 DOI: 10.2217/nnm-2017-0387] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
25 Su H, Song X, Li J, Iqbal MZ, Kenston SSF, Li Z, Wu A, Ding M, Zhao J. Biosafety evaluation of Janus Fe3O4-TiO2 nanoparticles in Sprague Dawley rats after intravenous injection. Int J Nanomedicine 2018;13:6987-7001. [PMID: 30464454 DOI: 10.2147/IJN.S167851] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
26 Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw BS, Cai Q, Sun X, Wang X, Zhao L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 2018;8:3284-307. [PMID: 29930730 DOI: 10.7150/thno.25220] [Cited by in Crossref: 173] [Cited by in F6Publishing: 184] [Article Influence: 34.6] [Reference Citation Analysis]
27 Sahoo AK, Verma A, Pant P. Nanoformulations for Cancer Therapy. Nanotechnology Applied To Pharmaceutical Technology 2017. [DOI: 10.1007/978-3-319-70299-5_7] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]