BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Barreiro E, Jaitovich A. Muscle atrophy in chronic obstructive pulmonary disease: molecular basis and potential therapeutic targets. J Thorac Dis 2018;10:S1415-24. [PMID: 29928523 DOI: 10.21037/jtd.2018.04.168] [Cited by in Crossref: 32] [Cited by in F6Publishing: 41] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Ji Y, Li M, Chang M, Liu R, Qiu J, Wang K, Deng C, Shen Y, Zhu J, Wang W, Xu L, Sun H. Inflammation: Roles in Skeletal Muscle Atrophy. Antioxidants 2022;11:1686. [DOI: 10.3390/antiox11091686] [Reference Citation Analysis]
2 Nyberg A, Milad N, Martin M, Patoine D, Morissette MC, Saey D, Maltais F. Role of progression of training volume on intramuscular adaptations in patients with chronic obstructive pulmonary disease. Front Physiol 2022;13:873465. [DOI: 10.3389/fphys.2022.873465] [Reference Citation Analysis]
3 Burke JF, Quinlan ND, Werner BC, Browne JA. Total Hip Arthroplasty in Patients who Have Respiratory Disease who Use Supplemental Home Oxygen. J Arthroplasty 2022:S0883-5403(22)00753-7. [PMID: 35964856 DOI: 10.1016/j.arth.2022.08.012] [Reference Citation Analysis]
4 Hitachi K, Honda M, Tsuchida K. The Functional Role of Long Non-Coding RNA in Myogenesis and Skeletal Muscle Atrophy. Cells 2022;11:2291. [PMID: 35892588 DOI: 10.3390/cells11152291] [Reference Citation Analysis]
5 Lin H, Salech F, Lim A, Vogrin S, Duque G. The effect of rapamycin and its analogues on age-related musculoskeletal diseases: a systematic review. Aging Clin Exp Res 2022. [PMID: 35861940 DOI: 10.1007/s40520-022-02190-0] [Reference Citation Analysis]
6 Zhang F, Guo F, Liu Y, Zhang Y, Li D, Yang H. Shema Oral Liquid Ameliorates the Severity of LPS-Induced COPD via Regulating DNMT1. Front Pharmacol 2022;13:903593. [PMID: 35754478 DOI: 10.3389/fphar.2022.903593] [Reference Citation Analysis]
7 Kotlyarov S. Role of Short-Chain Fatty Acids Produced by Gut Microbiota in Innate Lung Immunity and Pathogenesis of the Heterogeneous Course of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2022;23:4768. [PMID: 35563159 DOI: 10.3390/ijms23094768] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Tey SL, Huynh DTT, Berde Y, Baggs G, How CH, Low YL, Cheong M, Chow WL, Tan NC, Chew STH. Prevalence of low muscle mass and associated factors in community-dwelling older adults in Singapore. Sci Rep 2021;11:23071. [PMID: 34845250 DOI: 10.1038/s41598-021-02274-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Singh D, Holmes S, Adams C, Bafadhel M, Hurst JR. Overcoming Therapeutic Inertia to Reduce the Risk of COPD Exacerbations: Four Action Points for Healthcare Professionals. Int J Chron Obstruct Pulmon Dis 2021;16:3009-16. [PMID: 34754186 DOI: 10.2147/COPD.S329316] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 de Bisschop C, Caron F, Ingrand P, Bretonneau Q, Dupuy O, Meurice JC. Does branched-chain amino acid supplementation improve pulmonary rehabilitation effect in COPD? Respir Med 2021;189:106642. [PMID: 34678585 DOI: 10.1016/j.rmed.2021.106642] [Reference Citation Analysis]
11 Qaisar R, Ustrana S, Muhammad T, Shah I. Sarcopenia in pulmonary diseases is associated with elevated sarcoplasmic reticulum stress and myonuclear disorganization. Histochem Cell Biol 2021. [PMID: 34665327 DOI: 10.1007/s00418-021-02043-3] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Qin L, Guitart M, Admetlló M, Esteban-Cucó S, Maiques JM, Xia Y, Zha J, Carbullanca S, Duran X, Wang X, Barreiro E. Do Redox Balance and Inflammatory Events Take Place in Mild Bronchiectasis? A Hint to Clinical Implications. J Clin Med 2021;10:4534. [PMID: 34640555 DOI: 10.3390/jcm10194534] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
13 Bhadra R, Bhattacharya S, D'Souza GA, Schols AMWJ, Sambashivaiah S. Pulmonary Rehabilitation in the Management of Chronic Obstructive Pulmonary Disease among Asian Indians- Current Status and Moving Forward. COPD 2021;18:476-81. [PMID: 34380343 DOI: 10.1080/15412555.2021.1962267] [Reference Citation Analysis]
14 Zhao Y, Li M, Yang Y, Wu T, Huang Q, Wu Q, Ren C. Identification of Macrophage Polarization-Related Genes as Biomarkers of Chronic Obstructive Pulmonary Disease Based on Bioinformatics Analyses. Biomed Res Int 2021;2021:9921012. [PMID: 34250093 DOI: 10.1155/2021/9921012] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Brook MS, Wilkinson DJ, Atherton PJ. An update on nutrient modulation in the management of disease-induced muscle wasting: evidence from human studies. Curr Opin Clin Nutr Metab Care 2020;23:174-80. [PMID: 32175954 DOI: 10.1097/MCO.0000000000000652] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Dial AG, Monaco CMF, Grafham GK, Romanova N, Simpson JA, Tarnopolsky MA, Perry CGR, Kalaitzoglou E, Hawke TJ. Muscle and serum myostatin expression in type 1 diabetes. Physiol Rep 2020;8:e14500. [PMID: 32652899 DOI: 10.14814/phy2.14500] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
17 van Wijk L, van Duinhoven S, Liem MSL, Bouman DE, Viddeleer AR, Klaase JM. Risk factors for surgery-related muscle quantity and muscle quality loss and their impact on outcome. Eur J Med Res 2021;26:36. [PMID: 33892809 DOI: 10.1186/s40001-021-00507-9] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
18 Ceco E, Celli D, Weinberg S, Shigemura M, Welch LC, Volpe L, Chandel NS, Bharat A, Lecuona E, Sznajder JI. Elevated CO2 Levels Delay Skeletal Muscle Repair by Increasing Fatty Acid Oxidation. Front Physiol 2020;11:630910. [PMID: 33551852 DOI: 10.3389/fphys.2020.630910] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
19 Billany RE, Vadaszy N, Lightfoot CJ, Graham-Brown MP, Smith AC, Wilkinson TJ. Characteristics of effective home-based resistance training in patients with noncommunicable chronic diseases: a systematic scoping review of randomised controlled trials. J Sports Sci 2021;39:1174-85. [PMID: 33337982 DOI: 10.1080/02640414.2020.1861741] [Reference Citation Analysis]
20 Knapp F, Niemann B, Li L, Molenda N, Kracht M, Schulz R, Rohrbach S. Differential effects of right and left heart failure on skeletal muscle in rats. J Cachexia Sarcopenia Muscle 2020;11:1830-49. [PMID: 32985798 DOI: 10.1002/jcsm.12612] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
21 Yoshida T, Delafontaine P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020;9:E1970. [PMID: 32858949 DOI: 10.3390/cells9091970] [Cited by in Crossref: 25] [Cited by in F6Publishing: 68] [Article Influence: 12.5] [Reference Citation Analysis]
22 Ahmadi A, Eftekhari MH, Mazloom Z, Masoompour M, Fararooei M, Eskandari MH, Mehrabi S, Bedeltavana A, Famouri M, Zare M, Nasimi N, Sohrabi Z. Fortified whey beverage for improving muscle mass in chronic obstructive pulmonary disease: a single-blind, randomized clinical trial. Respir Res 2020;21:216. [PMID: 32807165 DOI: 10.1186/s12931-020-01466-1] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Pérez-Rial S, Barreiro E, Fernández-Aceñero MJ, Fernández-Valle ME, González-Mangado N, Peces-Barba G. Early detection of skeletal muscle bioenergetic deficit by magnetic resonance spectroscopy in cigarette smoke-exposed mice. PLoS One 2020;15:e0234606. [PMID: 32569331 DOI: 10.1371/journal.pone.0234606] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
24 Ehmsen JT, Höke A. Cellular and molecular features of neurogenic skeletal muscle atrophy. Exp Neurol 2020;331:113379. [PMID: 32533969 DOI: 10.1016/j.expneurol.2020.113379] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
25 Dalle S, Koppo K. Is inflammatory signaling involved in disease-related muscle wasting? Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes. Exp Gerontol 2020;137:110964. [PMID: 32407865 DOI: 10.1016/j.exger.2020.110964] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
26 Suleymanova AK, Baranova IA. [Evaluation of the relationship between the parameters of peripheral skeletal and respiratory muscles in patients with chronic obstructive pulmonary disease]. Ter Arkh 2020;92:36-41. [PMID: 32598791 DOI: 10.26442/00403660.2020.03.000448] [Reference Citation Analysis]
27 Gomez-Cabrera MC, Arc-Chagnaud C, Salvador-Pascual A, Brioche T, Chopard A, Olaso-Gonzalez G, Viña J. Redox modulation of muscle mass and function. Redox Biol 2020;35:101531. [PMID: 32371010 DOI: 10.1016/j.redox.2020.101531] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
28 Mastej E, Gillenwater L, Zhuang Y, Pratte KA, Bowler RP, Kechris K. Identifying Protein-metabolite Networks Associated with COPD Phenotypes. Metabolites 2020;10:E124. [PMID: 32218378 DOI: 10.3390/metabo10040124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
29 Hitachi K, Nakatani M, Funasaki S, Hijikata I, Maekawa M, Honda M, Tsuchida K. Expression Levels of Long Non-Coding RNAs Change in Models of Altered Muscle Activity and Muscle Mass. Int J Mol Sci 2020;21:E1628. [PMID: 32120896 DOI: 10.3390/ijms21051628] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
30 Mañas-García L, Bargalló N, Gea J, Barreiro E. Muscle Phenotype, Proteolysis, and Atrophy Signaling During Reloading in Mice: Effects of Curcumin on the Gastrocnemius. Nutrients 2020;12:E388. [PMID: 32024036 DOI: 10.3390/nu12020388] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
31 Marillier M, Bernard AC, Vergès S, Neder JA. Locomotor Muscles in COPD: The Rationale for Rehabilitative Exercise Training. Front Physiol 2019;10:1590. [PMID: 31992992 DOI: 10.3389/fphys.2019.01590] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
32 Grönholdt-Klein M, Altun M, Becklén M, Dickman Kahm E, Fahlström A, Rullman E, Ulfhake B. Muscle atrophy and regeneration associated with behavioural loss and recovery of function after sciatic nerve crush. Acta Physiol (Oxf) 2019;227:e13335. [PMID: 31199566 DOI: 10.1111/apha.13335] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
33 Bak SH, Kwon SO, Han SS, Kim WJ. Computed tomography-derived area and density of pectoralis muscle associated disease severity and longitudinal changes in chronic obstructive pulmonary disease: a case control study. Respir Res 2019;20:226. [PMID: 31638996 DOI: 10.1186/s12931-019-1191-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
34 Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Mitochondrial Dysfunction in Skeletal Muscle Pathologies. Curr Protein Pept Sci 2019;20:536-46. [PMID: 30947668 DOI: 10.2174/1389203720666190402100902] [Cited by in Crossref: 14] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
35 Gordon BS, Rossetti ML, Eroshkin AM. Arrdc2 and Arrdc3 elicit divergent changes in gene expression in skeletal muscle following anabolic and catabolic stimuli. Physiological Genomics 2019;51:208-17. [DOI: 10.1152/physiolgenomics.00007.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
36 Bui K, Nyberg A, Rabinovich R, Saey D, Maltais F. The Relevance of Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. Clinics in Chest Medicine 2019;40:367-83. [DOI: 10.1016/j.ccm.2019.02.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
37 Barreiro E, Salazar-degracia A, Sancho-muñoz A, Aguiló R, Rodríguez-fuster A, Gea J. Endoplasmic reticulum stress and unfolded protein response in diaphragm muscle dysfunction of patients with stable chronic obstructive pulmonary disease. Journal of Applied Physiology 2019;126:1572-86. [DOI: 10.1152/japplphysiol.00670.2018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
38 Salazar-Degracia A, Granado-Martínez P, Millán-Sánchez A, Tang J, Pons-Carreto A, Barreiro E. Reduced lung cancer burden by selective immunomodulators elicits improvements in muscle proteolysis and strength in cachectic mice. J Cell Physiol 2019;234:18041-52. [PMID: 30851071 DOI: 10.1002/jcp.28437] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
39 Souza RMP, Cardim AB, Maia TO, Rocha LG, Bezerra SD, Marinho PÉM. Inspiratory muscle strength, diaphragmatic mobility, and body composition in chronic obstructive pulmonary disease. Physiother Res Int 2019;24:e1766. [PMID: 30628141 DOI: 10.1002/pri.1766] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
40 Barreiro E, Sancho-Muñoz A, Puig-Vilanova E, Salazar-Degracia A, Pascual-Guardia S, Casadevall C, Gea J. Differences in micro-RNA expression profile between vastus lateralis samples and myotubes in COPD cachexia. J Appl Physiol (1985) 2019;126:403-12. [PMID: 30543501 DOI: 10.1152/japplphysiol.00611.2018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
41 Barreiro E, Salazar‐degracia A, Sancho‐muñoz A, Gea J. Endoplasmic reticulum stress and unfolded protein response profile in quadriceps of sarcopenic patients with respiratory diseases. J Cell Physiol 2019;234:11315-29. [DOI: 10.1002/jcp.27789] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]