BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ganapathy-Kanniappan S, Kunjithapatham R, Geschwind JF. Glyceraldehyde-3-phosphate dehydrogenase: a promising target for molecular therapy in hepatocellular carcinoma. Oncotarget. 2012;3:940-953. [PMID: 22964488 DOI: 10.18632/oncotarget.623] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 6.1] [Reference Citation Analysis]
Number Citing Articles
1 Kunjithapatham R, Ganapathy-Kanniappan S. GAPDH with NAD+-binding site mutation competitively inhibits the wild-type and affects glucose metabolism in cancer. Biochim Biophys Acta Gen Subj 2018;1862:2555-63. [PMID: 30077773 DOI: 10.1016/j.bbagen.2018.08.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
2 Yu L, Chen X, Wang L, Chen S. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy. Oncotarget 2016;7:38908-26. [PMID: 26918353 DOI: 10.18632/oncotarget.7676] [Cited by in Crossref: 55] [Cited by in F6Publishing: 54] [Article Influence: 13.8] [Reference Citation Analysis]
3 Mikawa T, LLeonart ME, Takaori-Kondo A, Inagaki N, Yokode M, Kondoh H. Dysregulated glycolysis as an oncogenic event. Cell Mol Life Sci 2015;72:1881-92. [PMID: 25609364 DOI: 10.1007/s00018-015-1840-3] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 6.6] [Reference Citation Analysis]
4 Wang H, Wang M, Yang X, Xu X, Hao Q, Yan A, Hu M, Lobinski R, Li H, Sun H. Antimicrobial silver targets glyceraldehyde-3-phosphate dehydrogenase in glycolysis of E. coli. Chem Sci 2019;10:7193-9. [PMID: 31588287 DOI: 10.1039/c9sc02032b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 6.3] [Reference Citation Analysis]
5 Longo M, Paolini E, Meroni M, Dongiovanni P. Remodeling of Mitochondrial Plasticity: The Key Switch from NAFLD/NASH to HCC. Int J Mol Sci 2021;22:4173. [PMID: 33920670 DOI: 10.3390/ijms22084173] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Dando I, Pacchiana R, Pozza ED, Cataldo I, Bruno S, Conti P, Cordani M, Grimaldi A, Butera G, Caraglia M, Scarpa A, Palmieri M, Donadelli M. UCP2 inhibition induces ROS/Akt/mTOR axis: Role of GAPDH nuclear translocation in genipin/everolimus anticancer synergism. Free Radic Biol Med 2017;113:176-89. [PMID: 28962872 DOI: 10.1016/j.freeradbiomed.2017.09.022] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 6.4] [Reference Citation Analysis]
7 Floberg JM, Schwarz JK. Manipulation of Glucose and Hydroperoxide Metabolism to Improve Radiation Response. Semin Radiat Oncol 2019;29:33-41. [PMID: 30573182 DOI: 10.1016/j.semradonc.2018.10.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
8 Ganapathy-Kanniappan S. Taming Tumor Glycolysis and Potential Implications for Immunotherapy. Front Oncol 2017;7:36. [PMID: 28348977 DOI: 10.3389/fonc.2017.00036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
9 Savreux-Lenglet G, Depauw S, David-Cordonnier MH. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts. Int J Mol Sci 2015;16:26555-81. [PMID: 26556350 DOI: 10.3390/ijms161125971] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
10 Marín-Hernández Á, Rodríguez-Zavala JS, Del Mazo-Monsalvo I, Rodríguez-Enríquez S, Moreno-Sánchez R, Saavedra E. Inhibition of Non-flux-Controlling Enzymes Deters Cancer Glycolysis by Accumulation of Regulatory Metabolites of Controlling Steps. Front Physiol 2016;7:412. [PMID: 27721794 DOI: 10.3389/fphys.2016.00412] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
11 Simioni C, Martelli AM, Cani A, Cetin-Atalay R, McCubrey JA, Capitani S, Neri LM. The AKT inhibitor MK-2206 is cytotoxic in hepatocarcinoma cells displaying hyperphosphorylated AKT-1 and synergizes with conventional chemotherapy. Oncotarget 2013;4:1496-506. [PMID: 24036604 DOI: 10.18632/oncotarget.1236] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 5.1] [Reference Citation Analysis]
12 Yadav S, Pandey SK, Goel Y, Temre MK, Singh SM. Diverse Stakeholders of Tumor Metabolism: An Appraisal of the Emerging Approach of Multifaceted Metabolic Targeting by 3-Bromopyruvate. Front Pharmacol 2019;10:728. [PMID: 31333455 DOI: 10.3389/fphar.2019.00728] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
13 Galbiati A, Zana A, Conti P. Covalent inhibitors of GAPDH: From unspecific warheads to selective compounds. Eur J Med Chem 2020;207:112740. [PMID: 32898762 DOI: 10.1016/j.ejmech.2020.112740] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Krasnov GS, Dmitriev AA, Snezhkina AV, Kudryavtseva AV. Deregulation of glycolysis in cancer: glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target. Expert Opinion on Therapeutic Targets 2013;17:681-93. [DOI: 10.1517/14728222.2013.775253] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 7.4] [Reference Citation Analysis]
15 Arabiyat AS, Becerra-bayona S, Kamaldinov T, Munoz-pinto DJ, Hahn MS. Hydrogel Properties May Influence Mesenchymal Stem Cell Lineage Progression Through Modulating GAPDH Activity. Regen Eng Transl Med 2021;7:494-505. [DOI: 10.1007/s40883-020-00164-0] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Kusnadi EP, Hannan KM, Hicks RJ, Hannan RD, Pearson RB, Kang J. Regulation of rDNA transcription in response to growth factors, nutrients and energy. Gene 2015;556:27-34. [PMID: 25447905 DOI: 10.1016/j.gene.2014.11.010] [Cited by in Crossref: 61] [Cited by in F6Publishing: 52] [Article Influence: 7.6] [Reference Citation Analysis]
17 Hu Y, Zhang E, Huang L, Li W, Liang P, Wang X, Xu J, Huang Y, Yu X. Expression profiles of glyceraldehyde-3-phosphate dehydrogenase from Clonorchis sinensis: a glycolytic enzyme with plasminogen binding capacity. Parasitol Res 2014;113:4543-53. [DOI: 10.1007/s00436-014-4144-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
18 Lenglet G, Depauw S, Mendy D, David-Cordonnier MH. Protein recognition of the S23906-1-DNA adduct by nuclear proteins: direct involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem J. 2013;452:147-159. [PMID: 23409959 DOI: 10.1042/bj20120860] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
19 Ruan H, Wang T, Yang C, Jin G, Gu D, Deng X, Wang C, Qin W, Jin H. Co-expression of LASS2 and TGF-β1 predicts poor prognosis in hepatocellular carcinoma. Sci Rep 2016;6:32421. [PMID: 27581744 DOI: 10.1038/srep32421] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
20 Joly JH, Delfarah A, Phung PS, Parrish S, Graham NA. A synthetic lethal drug combination mimics glucose deprivation-induced cancer cell death in the presence of glucose. J Biol Chem 2020;295:1350-65. [PMID: 31914417 DOI: 10.1074/jbc.RA119.011471] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
21 Roy A, Ahir M, Bhattacharya S, Parida PK, Adhikary A, Jana K, Ray M. Induction of mitochondrial apoptotic pathway in triple negative breast carcinoma cells by methylglyoxal via generation of reactive oxygen species. Mol Carcinog 2017;56:2086-103. [PMID: 28418078 DOI: 10.1002/mc.22665] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
22 Ganapathy-Kanniappan S, Karthikeyan S, Geschwind JF, Mezey E. Is the pathway of energy metabolism modified in advanced cirrhosis? J Hepatol 2014;61:452. [PMID: 24810232 DOI: 10.1016/j.jhep.2014.04.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
23 Kunjithapatham R, Geschwind JF, Devine L, Boronina TN, O'Meally RN, Cole RN, Torbenson MS, Ganapathy-Kanniappan S. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum. J Proteome Res 2015;14:1645-56. [PMID: 25734908 DOI: 10.1021/acs.jproteome.5b00089] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
24 Zhu XL, Wang YL, Chen JP, Duan LL, Cong PF, Qu YC, Li-Ling J, Zhang MX. Alternol inhibits migration and invasion of human hepatocellular carcinoma cells by targeting epithelial-to-mesenchymal transition. Tumour Biol. 2014;35:1627-1635. [PMID: 24078466 DOI: 10.1007/s13277-013-1224-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
25 Ghanavat M, Shahrouzian M, Deris Zayeri Z, Banihashemi S, Kazemi SM, Saki N. Digging deeper through glucose metabolism and its regulators in cancer and metastasis. Life Sci 2021;264:118603. [PMID: 33091446 DOI: 10.1016/j.lfs.2020.118603] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
26 Khare T, Khare S, Angdisen JJ, Zhang Q, Stuckel A, Mooney BP, Ridenhour SE, Gitan RS, Hammoud GM, Ibdah JA. Defects in long-chain 3-hydroxy acyl-CoA dehydrogenase lead to hepatocellular carcinoma: A novel etiology of hepatocellular carcinoma. Int J Cancer 2020;147:1461-73. [PMID: 32115688 DOI: 10.1002/ijc.32943] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Marsh L, Shah K. A novel inhibitor of Mammalian triosephosphate isomerase found by an in silico approach. Int J Med Chem 2014;2014:469125. [PMID: 25383217 DOI: 10.1155/2014/469125] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
28 De Matteis S, Ragusa A, Marisi G, De Domenico S, Casadei Gardini A, Bonafè M, Giudetti AM. Aberrant Metabolism in Hepatocellular Carcinoma Provides Diagnostic and Therapeutic Opportunities. Oxid Med Cell Longev 2018;2018:7512159. [PMID: 30524660 DOI: 10.1155/2018/7512159] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 12.3] [Reference Citation Analysis]
29 Vanhove K, Graulus GJ, Mesotten L, Thomeer M, Derveaux E, Noben JP, Guedens W, Adriaensens P. The Metabolic Landscape of Lung Cancer: New Insights in a Disturbed Glucose Metabolism. Front Oncol 2019;9:1215. [PMID: 31803611 DOI: 10.3389/fonc.2019.01215] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
30 Joly JH, Delfarah A, Phung PS, Parrish S, Graham NA. A synthetic lethal drug combination mimics glucose deprivation–induced cancer cell death in the presence of glucose. Journal of Biological Chemistry 2020;295:1350-65. [DOI: 10.1016/s0021-9258(17)49891-7] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
31 Savic LJ, Chapiro J, Duwe G, Geschwind JF. Targeting glucose metabolism in cancer: new class of agents for loco-regional and systemic therapy of liver cancer and beyond? Hepat Oncol 2016;3:19-28. [PMID: 26989470 DOI: 10.2217/hep.15.36] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
32 Tarrado-castellarnau M, Diaz-moralli S, Polat IH, Sanz-pamplona R, Alenda C, Moreno V, Castells A, Cascante M. Glyceraldehyde-3-phosphate dehydrogenase is overexpressed in colorectal cancer onset. transl med commun 2017;2. [DOI: 10.1186/s41231-017-0015-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
33 Foxler DE, Bridge KS, Foster JG, Grevitt P, Curry S, Shah KM, Davidson KM, Nagano A, Gadaleta E, Rhys HI, Kennedy PT, Hermida MA, Chang TY, Shaw PE, Reynolds LE, McKay TR, Wang HW, Ribeiro PS, Plevin MJ, Lagos D, Lemoine NR, Rajan P, Graham TA, Chelala C, Hodivala-Dilke KM, Spendlove I, Sharp TV. A HIF-LIMD1 negative feedback mechanism mitigates the pro-tumorigenic effects of hypoxia. EMBO Mol Med 2018;10:e8304. [PMID: 29930174 DOI: 10.15252/emmm.201708304] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
34 Bao MH, Wong CC. Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells 2021;10:1715. [PMID: 34359884 DOI: 10.3390/cells10071715] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Mossenta M, Busato D, Dal Bo M, Toffoli G. Glucose Metabolism and Oxidative Stress in Hepatocellular Carcinoma: Role and Possible Implications in Novel Therapeutic Strategies. Cancers (Basel) 2020;12:E1668. [PMID: 32585931 DOI: 10.3390/cancers12061668] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
36 Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 2013;12:152. [PMID: 24298908 DOI: 10.1186/1476-4598-12-152] [Cited by in Crossref: 379] [Cited by in F6Publishing: 380] [Article Influence: 42.1] [Reference Citation Analysis]
37 Shang RZ, Qu SB, Wang DS. Reprogramming of glucose metabolism in hepatocellular carcinoma: Progress and prospects. World J Gastroenterol 2016; 22(45): 9933-9943 [PMID: 28018100 DOI: 10.3748/wjg.v22.i45.9933] [Cited by in CrossRef: 42] [Cited by in F6Publishing: 43] [Article Influence: 7.0] [Reference Citation Analysis]
38 Abdel-wahab AF, Mahmoud W, Al-harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacological Research 2019;150:104511. [DOI: 10.1016/j.phrs.2019.104511] [Cited by in Crossref: 80] [Cited by in F6Publishing: 89] [Article Influence: 26.7] [Reference Citation Analysis]
39 Amelio I, Antonov AA, Catani MV, Massoud R, Bernassola F, Knight RA, Melino G, Rufini A. TAp73 promotes anabolism. Oncotarget 2014;5:12820-934. [PMID: 25514460 DOI: 10.18632/oncotarget.2667] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.6] [Reference Citation Analysis]
40 Roy M, Finley SD. Computational Model Predicts the Effects of Targeting Cellular Metabolism in Pancreatic Cancer. Front Physiol 2017;8:217. [PMID: 28446878 DOI: 10.3389/fphys.2017.00217] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
41 Janku F, Kaseb AO, Tsimberidou AM, Wolff RA, Kurzrock R. Identification of novel therapeutic targets in the PI3K/AKT/mTOR pathway in hepatocellular carcinoma using targeted next generation sequencing. Oncotarget 2014;5:3012-22. [PMID: 24931142 DOI: 10.18632/oncotarget.1687] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 7.9] [Reference Citation Analysis]
42 Gonçalves Lda R, Campanhon IB, Domingues RR, Paes Leme AF, Soares da Silva MR. Comparative salivary proteome of hepatitis B- and C-infected patients. PLoS One 2014;9:e113683. [PMID: 25423034 DOI: 10.1371/journal.pone.0113683] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
43 Rahier NJ, Molinier N, Long C, Deshmukh SK, Kate AS, Ranadive P, Verekar SA, Jiotode M, Lavhale RR, Tokdar P, Balakrishnan A, Meignan S, Robichon C, Gomes B, Aussagues Y, Samson A, Sautel F, Bailly C. Anticancer activity of koningic acid and semisynthetic derivatives. Bioorg Med Chem 2015;23:3712-21. [PMID: 25937235 DOI: 10.1016/j.bmc.2015.04.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.9] [Reference Citation Analysis]
44 Zhou L, Wang Z, Xu X, Wan Y, Qu K, Fan H, Chen Q, Sun X, Liu C. Nek7 is overexpressed in hepatocellular carcinoma and promotes hepatocellular carcinoma cell proliferation in vitro and in vivo. Oncotarget 2016;7:18620-30. [PMID: 26921196 DOI: 10.18632/oncotarget.7620] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
45 Park JB, Park H, Son J, Ha SJ, Cho HS. Structural Study of Monomethyl Fumarate-Bound Human GAPDH. Mol Cells 2019;42:597-603. [PMID: 31387164 DOI: 10.14348/molcells.2019.0114] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
46 Yan Y, Zang X, Jamieson CS, Lin HC, Houk KN, Zhou J, Tang Y. Biosynthesis of the fungal glyceraldehyde-3-phosphate dehydrogenase inhibitor heptelidic acid and mechanism of self-resistance. Chem Sci 2020;11:9554-62. [PMID: 34094220 DOI: 10.1039/d0sc03805a] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Chimenti MS, Tucci P, Candi E, Perricone R, Melino G, Willis AE. Metabolic profiling of human CD4+ cells following treatment with methotrexate and anti-TNF-α infliximab. Cell Cycle 2013;12:3025-36. [PMID: 23974102 DOI: 10.4161/cc.26067] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
48 Hu X, Yang X, He Q, Chen Q, Yu L. Glyoxalase 1 is up-regulated in hepatocellular carcinoma and is essential for HCC cell proliferation. Biotechnol Lett 2014;36:257-63. [PMID: 24158671 DOI: 10.1007/s10529-013-1372-6] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
49 Ganapathy-Kanniappan S. Evolution of GAPDH as a druggable target of tumor glycolysis? Expert Opin Ther Targets 2018;22:295-8. [PMID: 29517391 DOI: 10.1080/14728222.2018.1449834] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
50 Zhang X, Wan JX, Ke ZP, Wang F, Chai HX, Liu JQ. TMEM88, CCL14 and CLEC3B as prognostic biomarkers for prognosis and palindromia of human hepatocellular carcinoma. Tumour Biol 2017;39:1010428317708900. [PMID: 28718365 DOI: 10.1177/1010428317708900] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
51 Ding X, Wang L, Chen M, Wu Y, Ge S, Li J, Fan X, Lin M. Sperm-Specific Glycolysis Enzyme Glyceraldehyde-3-Phosphate Dehydrogenase Regulated by Transcription Factor SOX10 to Promote Uveal Melanoma Tumorigenesis. Front Cell Dev Biol 2021;9:610683. [PMID: 34249897 DOI: 10.3389/fcell.2021.610683] [Reference Citation Analysis]
52 Butera G, Pacchiana R, Mullappilly N, Margiotta M, Bruno S, Conti P, Riganti C, Donadelli M. Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity. Biochim Biophys Acta Mol Cell Res 2018;1865:1914-23. [PMID: 30296496 DOI: 10.1016/j.bbamcr.2018.10.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
53 Rodacka A, Strumillo J, Serafin E, Puchala M. Analysis of Potential Binding Sites of 3,5,4'-Trihydroxystilbene (Resveratrol) and trans-3,3',5,5'-Tetrahydroxy-4'-methoxystilbene (THMS) to the GAPDH Molecule Using a Computational Ligand-Docking Method: Structural and Functional Changes in GAPDH Induced by the Examined Polyphenols. J Phys Chem B 2015;119:9592-600. [PMID: 26112149 DOI: 10.1021/acs.jpcb.5b03810] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
54 Zhang J, Zhang M, Huang J, Zhang G, Li C, Wang X, Kong W. Development and Validation of an Autophagy-Related Gene Signature for Predicting the Prognosis of Hepatocellular Carcinoma. Biomed Res Int 2021;2021:7771037. [PMID: 34746309 DOI: 10.1155/2021/7771037] [Reference Citation Analysis]
55 Lazarev VF, Guzhova IV, Margulis BA. Glyceraldehyde-3-phosphate Dehydrogenase is a Multifaceted Therapeutic Target. Pharmaceutics 2020;12:E416. [PMID: 32370188 DOI: 10.3390/pharmaceutics12050416] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
56 Wang QQ, Li MX, Li C, Gu XX, Zheng MZ, Chen LX, Li H. Natural Products and Derivatives Targeting at Cancer Energy Metabolism: A Potential Treatment Strategy. Curr Med Sci 2020;40:205-17. [PMID: 32337682 DOI: 10.1007/s11596-020-2165-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]