BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tripathi PP, Arami H, Banga I, Gupta J, Gandhi S. Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy. Oncotarget 2018;9:37252-67. [PMID: 30647857 DOI: 10.18632/oncotarget.26442] [Cited by in Crossref: 72] [Cited by in F6Publishing: 54] [Article Influence: 14.4] [Reference Citation Analysis]
Number Citing Articles
1 Ansari MA, Alomary MN, Jamal QMS, Almoshari Y, Salawi A, Almahmoud SA, Khan J. State-of-the-art Tools to Elucidate the Therapeutic Potential of TAT-peptide (TP) Conjugated Repurposing Drug Against SARS-CoV-2 Spike Glycoproteins. Curr Pharm Des 2022;28:3706-19. [PMID: 36278465 DOI: 10.2174/1381612829666221019144259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Bottens RA, Yamada T. Cell-Penetrating Peptides (CPPs) as Therapeutic and Diagnostic Agents for Cancer. Cancers (Basel) 2022;14. [PMID: 36428639 DOI: 10.3390/cancers14225546] [Reference Citation Analysis]
3 Hasannejad-asl B, Pooresmaeil F, Takamoli S, Dabiri M, Bolhassani A. Cell penetrating peptide: A potent delivery system in vaccine development. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1072685] [Reference Citation Analysis]
4 Gao C, Zhang L, Xu M, Luo Y, Wang B, Kuang M, Liu X, Sun M, Guo Y, Teng L, Wang C, Zhang Y, Xie J. Pulmonary delivery of liposomes co-loaded with SN38 prodrug and curcumin for the treatment of lung cancer. Eur J Pharm Biopharm 2022:S0939-6411(22)00187-4. [PMID: 36064084 DOI: 10.1016/j.ejpb.2022.08.021] [Reference Citation Analysis]
5 Roberts A, Gandhi S. A concise review on potential cancer biomarkers and advanced manufacturing of smart platform-based biosensors for early-stage cancer diagnostics. Biosensors and Bioelectronics: X 2022;11:100178. [DOI: 10.1016/j.biosx.2022.100178] [Reference Citation Analysis]
6 Thangudu S, Huang EY, Su CH. Safe magnetic resonance imaging on biocompatible nanoformulations. Biomater Sci 2022. [PMID: 35858468 DOI: 10.1039/d2bm00692h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Farooq Z, Howell LA, Mccormick PJ. Probing GPCR Dimerization Using Peptides. Front Endocrinol 2022;13:843770. [DOI: 10.3389/fendo.2022.843770] [Reference Citation Analysis]
8 Duskey JT, Rinaldi A, Ottonelli I, Caraffi R, De Benedictis CA, Sauer AK, Tosi G, Vandelli MA, Ruozi B, Grabrucker AM. Glioblastoma Multiforme Selective Nanomedicines for Improved Anti-Cancer Treatments. Pharmaceutics 2022;14:1450. [DOI: 10.3390/pharmaceutics14071450] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Kim Y, Kim H, Kim EH, Jang H, Jang Y, Chi SG, Yang Y, Kim SH. The Potential of Cell-Penetrating Peptides for mRNA Delivery to Cancer Cells. Pharmaceutics 2022;14:1271. [PMID: 35745843 DOI: 10.3390/pharmaceutics14061271] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 El-Kadiry AE, Beaudoin S, Plouffe S, Rafei M. Accum™ Technology: A Novel Conjugable Primer for Onco-Immunotherapy. Molecules 2022;27:3807. [PMID: 35744930 DOI: 10.3390/molecules27123807] [Reference Citation Analysis]
11 Rouatbi N, McGlynn T, Al-Jamal KT. Pre-clinical non-viral vectors exploited for in vivo CRISPR/Cas9 gene editing: an overview. Biomater Sci 2022. [PMID: 35604372 DOI: 10.1039/d1bm01452h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022;12:e822. [PMID: 35593206 DOI: 10.1002/ctm2.822] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
13 Schissel CK, Farquhar CE, Loas A, Malmberg AB, Pentelute BL. In-cell penetration selection—mass spectrometry produces noncanonical peptides for antisense delivery.. [DOI: 10.1101/2022.04.13.488231] [Reference Citation Analysis]
14 Mahmoud K, Swidan S, El-nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01309-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Samec T, Boulos J, Gilmore S, Hazelton A, Alexander-bryant A. Peptide-based delivery of therapeutics in cancer treatment. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100248] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Arenas AM, Andrades A, Patiño-mercau JR, Sanjuan-hidalgo J, Cuadros M, García DJ, Peinado P, Rodriguez MI, Baliñas-gavira C, Álvarez-perez JC, Medina PP. Opportunities of miRNAs in cancer therapeutics. MicroRNA in Human Malignancies 2022. [DOI: 10.1016/b978-0-12-822287-4.00015-3] [Reference Citation Analysis]
17 Roberts A, Mahari S, Gandhi S. Cells and Organs on a Chip in Biomedical Sciences. Microfluidics and Multi Organs on Chip 2022. [DOI: 10.1007/978-981-19-1379-2_10] [Reference Citation Analysis]
18 Narlawar S, Coudhury S, Gandhi S. Magnetic properties-based biosensors for early detection of cancer. Biosensor Based Advanced Cancer Diagnostics 2022. [DOI: 10.1016/b978-0-12-823424-2.00010-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Mahari S, Shahdeo D, Banga I, Choudhury S, Gandhi S. Clinical and preclinical data on therapeutic peptides. Peptide and Peptidomimetic Therapeutics 2022. [DOI: 10.1016/b978-0-12-820141-1.00007-8] [Reference Citation Analysis]
20 Shahdeo D, Gandhi S. Next generation biosensors as a cancer diagnostic tool. Biosensor Based Advanced Cancer Diagnostics 2022. [DOI: 10.1016/b978-0-12-823424-2.00016-8] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Neundorf I. Medical use of cell-penetrating peptides: how far have they come? Peptide and Peptidomimetic Therapeutics 2022. [DOI: 10.1016/b978-0-12-820141-1.00001-7] [Reference Citation Analysis]
22 Biswas S, Naskar J. Applications of Peptide in Cancer Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_39] [Reference Citation Analysis]
23 Biswas S, Naskar J. Applications of Peptide in Cancer Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_39-1] [Reference Citation Analysis]
24 Schaefer KG, Grau B, Moore N, Mingarro I, King GM, Barrera FN. Controllable membrane remodeling by a modified fragment of the apoptotic protein Bax. Faraday Discuss 2021;232:114-30. [PMID: 34549736 DOI: 10.1039/d0fd00070a] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Ansari MA, Jamal QMS, Rehman S, Almatroudi A, Alzohairy MA, Alomary MN, Tripathi T, Alharbi AH, Adil SF, Khan M, Shaheer Malik M. TAT-peptide conjugated repurposing drug against SARS-CoV-2 main protease (3CLpro): Potential therapeutic intervention to combat COVID-19. Arab J Chem 2020;13:8069-79. [PMID: 34909057 DOI: 10.1016/j.arabjc.2020.09.037] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
26 Yadav A, Singh S, Sohi H, Dang S. Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment. AAPS PharmSciTech 2021;23:25. [PMID: 34907501 DOI: 10.1208/s12249-021-02174-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
27 Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021;26:7453. [PMID: 34946535 DOI: 10.3390/molecules26247453] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
28 Trinidad-calderón PA, Varela-chinchilla CD, García-lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021;26:7453. [DOI: 10.3390/molecules26247453] [Reference Citation Analysis]
29 Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine (Lond) 2021;16:2605-31. [PMID: 34854336 DOI: 10.2217/nnm-2021-0281] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Jarak I, Pereira-silva M, Santos AC, Veiga F, Cabral H, Figueiras A. Multifunctional polymeric micelle-based nucleic acid delivery: Current advances and future perspectives. Applied Materials Today 2021;25:101217. [DOI: 10.1016/j.apmt.2021.101217] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
31 Zhang DY, Zheng Z, Zhao H, Wang HY, Ding F, Li HB, Pan YC, Guo DS. Structurally screening calixarenes as peptide transport activators. Chem Commun (Camb) 2021;57:12627-30. [PMID: 34761762 DOI: 10.1039/d1cc05414g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Duarte D, Vale N. Synergistic Interaction of CPP2 Coupled with Thiazole Derivates Combined with Clotrimazole and Antineoplastic Drugs in Prostate and Colon Cancer Cell Lines. Int J Mol Sci 2021;22:11984. [PMID: 34769414 DOI: 10.3390/ijms222111984] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Lobaina Y, Urquiza D, Garay H, Perera Y, Yang K. Evaluation of Cell-Penetrating Peptides as Mucosal Immune Enhancers for Nasal Vaccination. Int J Pept Res Ther 2021;:1-10. [PMID: 34658688 DOI: 10.1007/s10989-021-10296-8] [Reference Citation Analysis]
34 Shoari A, Tooyserkani R, Tahmasebi M, Löwik DWPM. Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics 2021;13:1391. [PMID: 34575464 DOI: 10.3390/pharmaceutics13091391] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
35 Zarazvand F, Karimi M, Moosavian SA, Arabi L, Badiee A, Jaafari MR, Mashreghi M. Efficacy Comparison of TAT Peptide-Functionalized PEGylated Liposomal Doxorubicin in C26 and B16F0 Tumor Mice Models. Int J Pept Res Ther 2021;27:2099-109. [DOI: 10.1007/s10989-021-10238-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Shahdeo D, Chandra AB, Gandhi S. Urokinase Plasminogen Activator Receptor-Mediated Targeting of a Stable Nanocomplex Coupled with Specific Peptides for Imaging of Cancer. Anal Chem 2021;93:11868-77. [PMID: 34410104 DOI: 10.1021/acs.analchem.1c02697] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
37 Rusiecka I, Gągało I, Kocić I. Cell-penetrating peptides improve pharmacokinetics and pharmacodynamics of anticancer drugs. Tissue Barriers 2021;:1965418. [PMID: 34402743 DOI: 10.1080/21688370.2021.1965418] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Saldías MP, Maureira D, Orellana-Serradell O, Silva I, Lavanderos B, Cruz P, Torres C, Cáceres M, Cerda O. TRP Channels Interactome as a Novel Therapeutic Target in Breast Cancer. Front Oncol 2021;11:621614. [PMID: 34178620 DOI: 10.3389/fonc.2021.621614] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
39 Matijass M, Neundorf I. Cell-penetrating peptides as part of therapeutics used in cancer research. Medicine in Drug Discovery 2021;10:100092. [DOI: 10.1016/j.medidd.2021.100092] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
40 Shahdeo D, Kesarwani V, Suhag D, Ahmed J, Alshehri SM, Gandhi S. Self-assembled chitosan polymer intercalating peptide functionalized gold nanoparticles as nanoprobe for efficient imaging of urokinase plasminogen activator receptor in cancer diagnostics. Carbohydr Polym 2021;266:118138. [PMID: 34044952 DOI: 10.1016/j.carbpol.2021.118138] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
41 Zielińska A, Szalata M, Gorczyński A, Karczewski J, Eder P, Severino P, Cabeda JM, Souto EB, Słomski R. Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. Cancers (Basel) 2021;13:1896. [PMID: 33920840 DOI: 10.3390/cancers13081896] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
42 Aloisio A, Nisticò N, Mimmi S, Maisano D, Vecchio E, Fiume G, Iaccino E, Quinto I. Phage-Displayed Peptides for Targeting Tyrosine Kinase Membrane Receptors in Cancer Therapy. Viruses 2021;13:649. [PMID: 33918836 DOI: 10.3390/v13040649] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
43 Timur SS, Gürsoy RN. The role of peptide-based therapeutics in oncotherapy. J Drug Target 2021;:1-15. [PMID: 33775190 DOI: 10.1080/1061186X.2021.1906884] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
44 Zielińska W, Gagat M, Mikołajczyk K, Hałas-wiśniewska M, Grzanka A. Low Effectiveness of the Introduction of pmaxGFP into Primary Human Coronary Endothelial Cells Using Cell-Penetrating Peptides and Nuclear-Localization Sequences in Non-Covalent Interactions. Applied Sciences 2021;11:1997. [DOI: 10.3390/app11051997] [Reference Citation Analysis]
45 Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021;178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
46 Kim GC, Cheon DH, Lee Y. Challenge to overcome current limitations of cell-penetrating peptides. Biochim Biophys Acta Proteins Proteom 2021;1869:140604. [PMID: 33453413 DOI: 10.1016/j.bbapap.2021.140604] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 13.0] [Reference Citation Analysis]
47 Falato L, Gestin M, Langel Ü. Cell-Penetrating Peptides Delivering siRNAs: An Overview. Methods Mol Biol 2021;2282:329-52. [PMID: 33928583 DOI: 10.1007/978-1-0716-1298-9_18] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
48 Jain S, Raza K, Agrawal AK, Vaidya A. Cell-penetrating peptides in cancer targeting. Nanotechnology Applications for Cancer Chemotherapy 2021. [DOI: 10.1016/b978-0-12-817846-1.00010-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Silva S, Alves C, Duarte D, Costa A, Sarmento B, Almeida AJ, Gomes P, Vale N. Model Amphipathic Peptide Coupled with Tacrine to Improve Its Antiproliferative Activity. Int J Mol Sci 2020;22:E242. [PMID: 33383645 DOI: 10.3390/ijms22010242] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
50 Ulyanova V, Dudkina E, Nadyrova A, Kalashnikov V, Surchenko Y, Ilinskaya O. The Cytotoxicity of RNase-Derived Peptides. Biomolecules 2020;11:E16. [PMID: 33375305 DOI: 10.3390/biom11010016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
51 Venit T, Dowaidar M, Gestin M, Mahmood SR, Langel Ü, Percipalle P. Transcriptional Profiling Reveals Ribosome Biogenesis, Microtubule Dynamics and Expression of Specific lncRNAs to be Part of a Common Response to Cell-Penetrating Peptides. Biomolecules 2020;10:E1567. [PMID: 33213097 DOI: 10.3390/biom10111567] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
52 Sang P, Shi Y, Huang B, Xue S, Odom T, Cai J. Sulfono-γ-AApeptides as Helical Mimetics: Crystal Structures and Applications. Acc Chem Res 2020;53:2425-42. [PMID: 32940995 DOI: 10.1021/acs.accounts.0c00482] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
53 Vale N, Duarte D, Silva S, Correia AS, Costa B, Gouveia MJ, Ferreira A. Cell-penetrating peptides in oncologic pharmacotherapy: A review. Pharmacol Res 2020;162:105231. [PMID: 33027717 DOI: 10.1016/j.phrs.2020.105231] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
54 Ansari MA, Almatroudi A, Alzohairy MA, AlYahya S, Alomary MN, Al-Dossary HA, Alghamdi S. Lipid-based nano delivery of Tat-peptide conjugated drug or vaccine-promising therapeutic strategy for SARS-CoV-2 treatment. Expert Opin Drug Deliv 2020;17:1671-4. [PMID: 32820694 DOI: 10.1080/17425247.2020.1813712] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
55 Sehnert B, Burkhardt H, Dübel S, Voll RE. Cell-Type Targeted NF-kappaB Inhibition for the Treatment of Inflammatory Diseases. Cells 2020;9:E1627. [PMID: 32640727 DOI: 10.3390/cells9071627] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
56 Liu J, Afshar S. In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides. Int J Mol Sci 2020;21:E4719. [PMID: 32630650 DOI: 10.3390/ijms21134719] [Cited by in Crossref: 9] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
57 Kumar S, Sharma B. Leveraging Electrostatic Interactions for Drug Delivery to the Joint. Bioelectricity 2020;2:82-100. [PMID: 32856016 DOI: 10.1089/bioe.2020.0014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
58 Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front Pharmacol 2020;11:697. [PMID: 32508641 DOI: 10.3389/fphar.2020.00697] [Cited by in Crossref: 124] [Cited by in F6Publishing: 135] [Article Influence: 41.3] [Reference Citation Analysis]
59 Lian Z, Ji T. Functional peptide-based drug delivery systems. J Mater Chem B 2020;8:6517-29. [PMID: 32350489 DOI: 10.1039/d0tb00713g] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
60 Shah SS, Casanova N, Antuono G, Sabatino D. Polyamide Backbone Modified Cell Targeting and Penetrating Peptides in Cancer Detection and Treatment. Front Chem 2020;8:218. [PMID: 32296681 DOI: 10.3389/fchem.2020.00218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
61 Hingorani DV, Crisp JL, Doan MK, Camargo MF, Quraishi MA, Aguilera J, Gilardi M, Gross LA, Jiang T, Li WT, Ongkeko WM, Cohen EEW, Gutkind JS, Adams SR, Advani SJ. Redirecting extracellular proteases to molecularly guide radiosensitizing drugs to tumors. Biomaterials 2020;248:120032. [PMID: 32304937 DOI: 10.1016/j.biomaterials.2020.120032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
62 Gessner I, Neundorf I. Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy. Int J Mol Sci 2020;21:E2536. [PMID: 32268473 DOI: 10.3390/ijms21072536] [Cited by in Crossref: 66] [Cited by in F6Publishing: 67] [Article Influence: 22.0] [Reference Citation Analysis]
63 Eissa N, Sayers E, Birch D, Patel S, Tsai Y, Nielsen HM, Jones A. EJP18 peptide derived from the juxtamembrane domain of epidermal growth factor receptor represents a novel membrane-active cell-penetrating peptide. Biochemical Journal 2020;477:45-60. [DOI: 10.1042/bcj20190452] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
64 Kasoju A, Shrikrishna NS, Shahdeo D, Khan AA, Alanazi AM, Gandhi S. Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay. RSC Adv 2020;10:11843-50. [DOI: 10.1039/d0ra00062k] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
65 Kang Z, Ding G, Meng Z, Meng Q. The rational design of cell-penetrating peptides for application in delivery systems. Peptides 2019;121:170149. [DOI: 10.1016/j.peptides.2019.170149] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
66 Perche. Stimuli-Sensitive Cell Penetrating Peptide-Modified Nanocarriers. Processes 2019;7:727. [DOI: 10.3390/pr7100727] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
67 Ag Seleci D, Maurer V, Stahl F, Scheper T, Garnweitner G. Rapid Microfluidic Preparation of Niosomes for Targeted Drug Delivery. Int J Mol Sci 2019;20:E4696. [PMID: 31546717 DOI: 10.3390/ijms20194696] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
68 Skwarczynski M, Toth I. Cell-penetrating peptides in vaccine delivery: facts, challenges and perspectives. Ther Deliv 2019;10:465-7. [PMID: 31462173 DOI: 10.4155/tde-2019-0042] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
69 Lai B, Zhu P, Li H, Hu L, Wang J. Effect of docetaxel-loaded lipid microbubble in combination with ultrasound-triggered microbubble destruction on the growth of a gastric cancer cell line. Oncol Lett 2019;18:442-8. [PMID: 31289515 DOI: 10.3892/ol.2019.10289] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
70 Roberts A, Tripathi PP, Gandhi S. Graphene nanosheets as an electric mediator for ultrafast sensing of urokinase plasminogen activator receptor-A biomarker of cancer. Biosens Bioelectron 2019;141:111398. [PMID: 31176112 DOI: 10.1016/j.bios.2019.111398] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 9.3] [Reference Citation Analysis]
71 Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019;48:2967-3014. [DOI: 10.1039/c8cs00805a] [Cited by in Crossref: 229] [Cited by in F6Publishing: 242] [Article Influence: 57.3] [Reference Citation Analysis]