BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu Y, Yang T, Duan J, Mu N, Zhang T. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany NY) 2019;11:1089-109. [PMID: 30787203 DOI: 10.18632/aging.101766] [Cited by in Crossref: 33] [Cited by in F6Publishing: 55] [Article Influence: 16.5] [Reference Citation Analysis]
Number Citing Articles
1 Yang Z, Song D, Wang Y, Tang L, Wang F. lncRNA MALAT1 Promotes Diabetic Nephropathy Progression via miR-15b-5p/TLR4 Signaling Axis. Journal of Immunology Research 2022;2022:1-13. [DOI: 10.1155/2022/8098001] [Reference Citation Analysis]
2 Zeng C, Hu J, Chen F, Huang T, Zhang L. The Coordination of mTOR Signaling and Non-Coding RNA in Regulating Epileptic Neuroinflammation. Front Immunol 2022;13:924642. [DOI: 10.3389/fimmu.2022.924642] [Reference Citation Analysis]
3 Chu Y, Yu F, Wu Y, Yang J, Shi J, Ye T, Han D, Wang X. Identification of genes and key pathways underlying the pathophysiological association between nonalcoholic fatty liver disease and atrial fibrillation. BMC Med Genomics 2022;15. [DOI: 10.1186/s12920-022-01300-1] [Reference Citation Analysis]
4 Xie W, Chang W, Wang X, Liu F, Wang X, Yuan D, Zhang Y, Li T. Allicin Inhibits Osteosarcoma Growth by Promoting Oxidative Stress and Autophagy via the Inactivation of the lncRNA MALAT1-miR-376a-Wnt/β-Catenin Signaling Pathway. Oxidative Medicine and Cellular Longevity 2022;2022:1-14. [DOI: 10.1155/2022/4857814] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Chen X, Zhang L, Geng J, Chen Z, Cui X. MiR-205-5p Functions as a Tumor Suppressor in Gastric Cancer Cells through Downregulating FAM84B. J Oncol 2022;2022:8267891. [PMID: 35669244 DOI: 10.1155/2022/8267891] [Reference Citation Analysis]
6 Chowdhury SG, Bhattacharya D, Karmakar P. Exosomal long noncoding RNAs - the lead thespian behind the regulation, cause and cure of autophagy-related diseases. Mol Biol Rep 2022. [PMID: 35655053 DOI: 10.1007/s11033-022-07514-x] [Reference Citation Analysis]
7 Zhao Z, Liu J, Deng Z, Chen X, Li W. LncRNA MALAT1 promotes tenogenic differentiation of tendon-derived stem cells via regulating the miR-378a-3p/MAPK1 axis. Bioengineered 2022;13:13213-23. [DOI: 10.1080/21655979.2022.2076507] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Huang H, Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med 2022;9:896782. [DOI: 10.3389/fcvm.2022.896782] [Reference Citation Analysis]
9 Mu X, Shen Z, Lin Y, Xiao J, Xia K, Xu C, Chen B, Shi R, Zhu A, Sun X, Tao T, Song X, Xuan Q, Zhao Y. LncRNA-MALAT1 Regulates Cancer Glucose Metabolism in Prostate Cancer via MYBL2/mTOR Axis. Oxidative Medicine and Cellular Longevity 2022;2022:1-15. [DOI: 10.1155/2022/8693259] [Reference Citation Analysis]
10 Ghafouri-fard S, Khoshbakht T, Hussen BM, Jamal HH, Taheri M, Hajiesmaeili M. A Comprehensive Review on Function of miR-15b-5p in Malignant and Non-Malignant Disorders. Front Oncol 2022;12:870996. [DOI: 10.3389/fonc.2022.870996] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Deng Z, Jian Y, Cai H. Ropivacaine represses the proliferation, invasion, and migration of glioblastoma via modulating the microRNA-21-5p/KAT8 regulatory NSL complex subunit 2 axis. Bioengineered 2022;13:5975-86. [PMID: 35191804 DOI: 10.1080/21655979.2022.2037955] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Chen Z, Yang J, Gao Y, Jiang S, Li Z, Wang Y, Hu Z, Han F, Ni N. LncRNA MALAT1 aggravates the retinal angiogenesis via miR-320a/HIF-1α axis in diabetic retinopathy. Exp Eye Res 2022;:108984. [PMID: 35202706 DOI: 10.1016/j.exer.2022.108984] [Reference Citation Analysis]
13 Li Y, Wang B. Circular RNA circCHFR downregulation protects against oxidized low-density lipoprotein-induced endothelial injury via regulation of microRNA-15b-5p/growth arrest and DNA damage inducible gamma. Bioengineered 2022;13:4481-92. [PMID: 35137664 DOI: 10.1080/21655979.2022.2032967] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Shyu KG, Wang BW, Fang WJ, Pan CM, Lin CM. Exosomal MALAT1 Derived from High Glucose-Treated Macrophages Up-Regulates Resistin Expression via miR-150-5p Downregulation. Int J Mol Sci 2022;23:1095. [PMID: 35163020 DOI: 10.3390/ijms23031095] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Elwazir MY, Hussein MH, Toraih EA, Al Ageeli E, Esmaeel SE, Fawzy MS, Faisal S. Association of Angio-LncRNAs MIAT rs1061540/MALAT1 rs3200401 Molecular Variants with Gensini Score in Coronary Artery Disease Patients Undergoing Angiography. Biomolecules 2022;12:137. [DOI: 10.3390/biom12010137] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Cao C, Zhen W, Yu H, Zhang L, Liu Y. lncRNA MALAT1/miR-143 axis is a potential biomarker for in-stent restenosis and is involved in the multiplication of vascular smooth muscle cells. Open Life Sci 2021;16:1303-12. [PMID: 35005241 DOI: 10.1515/biol-2021-0126] [Reference Citation Analysis]
17 Wang H, Mou H, Xu X, Liu C, Zhou G, Gao B. LncRNA KCNQ1OT1 (potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1) aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 (mitogen-activated protein kinase 1) axis in sepsis. Bioengineered 2021;12:11353-68. [PMID: 34783627 DOI: 10.1080/21655979.2021.2005987] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Jayasuriya R, Ganesan K, Xu B, Ramkumar KM. Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed Pharmacother 2021;145:112421. [PMID: 34798473 DOI: 10.1016/j.biopha.2021.112421] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
19 Dai R, Zhuo H, Chen Y, Zhang K, Dong Y, Chen C, Wang W. Mechanism of Isosorbide Dinitrate Combined with Exercise Training Rehabilitation to Mobilize Endothelial Progenitor Cells in Patients with Coronary Heart Disease. Bioengineered 2021. [PMID: 34738489 DOI: 10.1080/21655979.2021.2000258] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
20 Bi S, Xu L, Chen S, Bu S, Xu Y. Detection of Herbal Combinations and Pharmacological Mechanisms of Clinical Prescriptions for Coronary Heart Disease Using Data Mining and Network Pharmacology. Evid Based Complement Alternat Med 2021;2021:9234984. [PMID: 34725557 DOI: 10.1155/2021/9234984] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Zhang L, Lou D, He D, Wang Y, Wu Y, Cao X, Qu P. Dysregulated Circulating Apoptosis- and Autophagy-Related lncRNAs as Diagnostic Markers in Coronary Artery Disease. Biomed Res Int 2021;2021:5517786. [PMID: 34513991 DOI: 10.1155/2021/5517786] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Shi Z, Zheng Z, Lin X, Ma H. Long Noncoding RNA MALAT1 Regulates the Progression of Atherosclerosis by miR-330-5p/NF-κB Signal Pathway. J Cardiovasc Pharmacol 2021;78:235-46. [PMID: 34554676 DOI: 10.1097/FJC.0000000000001061] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Liu T, Liu J, Hao L. Network Pharmacological Study and Molecular Docking Analysis of Qiweitangping in Treating Diabetic Coronary Heart Disease. Evid Based Complement Alternat Med 2021;2021:9925556. [PMID: 34367309 DOI: 10.1155/2021/9925556] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Shi Y, Jiang Z, Jiang L, Xu J. Integrative analysis of key candidate genes and signaling pathways in acute coronary syndrome related to obstructive sleep apnea by bioinformatics. Sci Rep 2021;11:14153. [PMID: 34239024 DOI: 10.1038/s41598-021-93789-2] [Reference Citation Analysis]
25 Bu S, Singh KK. Epigenetic Regulation of Autophagy in Cardiovascular Pathobiology. Int J Mol Sci 2021;22:6544. [PMID: 34207151 DOI: 10.3390/ijms22126544] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
26 Sun Y, Huang S, Wan C, Ruan Q, Xie X, Wei D, Li G, Lin S, Li H, Wu S. Knockdown of lncRNA ENST00000609755.1 Confers Protection Against Early oxLDL-Induced Coronary Heart Disease. Front Cardiovasc Med 2021;8:650212. [PMID: 34095248 DOI: 10.3389/fcvm.2021.650212] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
27 Zhong Y, Chen L, Li J, Yao Y, Liu Q, Niu K, Ma Y, Xu Y. Integration of summary data from GWAS and eQTL studies identified novel risk genes for coronary artery disease. Medicine (Baltimore) 2021;100:e24769. [PMID: 33725943 DOI: 10.1097/MD.0000000000024769] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
28 Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy 2021;:1-22. [PMID: 33525971 DOI: 10.1080/15548627.2021.1883881] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
29 Zhu Y, Zhu Y, Liu Y, Liu Y, Chen X. Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 correlates with microRNA-125b/microRNA-146a/microRNA-203 and predicts 2-year restenosis risk in coronary heart disease patients. Biomark Med 2021;15:257-71. [PMID: 33565328 DOI: 10.2217/bmm-2020-0715] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Cai Q, Gao ML, Huang LS, Chen HS, Pan LH. MALAT1/miRNA-203/Wnt5a: A potential mechanism for regulating coronary artery disease. Int J Cardiol 2021;329:48. [PMID: 33358830 DOI: 10.1016/j.ijcard.2020.12.046] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Wang ZY, Zhao T, Zhou J, Gao F. Elevated serum miR-3129-5p contributes to the progression of coronary heart disease via targeting mTOR. Kaohsiung J Med Sci 2021;37:314-23. [PMID: 33336524 DOI: 10.1002/kjm2.12333] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Peng C, Wang Y, Ji L, Kuang L, Yu Z, Li H, Zhang J, Zhao J. LncRNA-MALAT1/miRNA-204-5p/Smad4 Axis Regulates Epithelial-Mesenchymal Transition, Proliferation and Migration of Lens Epithelial Cells. Curr Eye Res 2021;46:1137-47. [PMID: 33327804 DOI: 10.1080/02713683.2020.1857778] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
33 Shao J, Jiang F, Hu M, Mei E, Pan Z, Chen C, Lin L, Zheng T, Cai W, Li Z, Liu J. The role of FOS-mediated autophagy activation in the indocyanine green-based photodynamic therapy for treating melanoma. J Photochem Photobiol B 2021;214:112101. [PMID: 33316624 DOI: 10.1016/j.jphotobiol.2020.112101] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Yuan Y, Xu L, Geng Z, Liu J, Zhang L, Wu Y, He D, Qu P. The role of non-coding RNA network in atherosclerosis. Life Sci 2021;265:118756. [PMID: 33189816 DOI: 10.1016/j.lfs.2020.118756] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
35 Liu X, Zhang P, Li Y, Zhao N, Han H. The AMPK-mTOR axis requires increased MALAT1 expression for promoting granulosa cell proliferation in endometriosis. Exp Ther Med 2021;21:21. [PMID: 33235630 DOI: 10.3892/etm.2020.9453] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
36 Gao J, Chen X, Shan C, Wang Y, Li P, Shao K. Autophagy in cardiovascular diseases: role of noncoding RNAs. Mol Ther Nucleic Acids 2021;23:101-18. [PMID: 33335796 DOI: 10.1016/j.omtn.2020.10.039] [Cited by in Crossref: 5] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
37 Zheng H, Feng H, Zhang W, Han Y, Zhao W. Targeting autophagy by natural product Ursolic acid for prevention and treatment of osteoporosis. Toxicol Appl Pharmacol 2020;409:115271. [PMID: 33065153 DOI: 10.1016/j.taap.2020.115271] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
38 Zhang H, Lu B. The Roles of ceRNAs-Mediated Autophagy in Cancer Chemoresistance and Metastasis. Cancers (Basel) 2020;12:E2926. [PMID: 33050642 DOI: 10.3390/cancers12102926] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
39 Moore JB 4th, Uchida S. Functional characterization of long noncoding RNAs. Curr Opin Cardiol 2020;35:199-206. [PMID: 32068613 DOI: 10.1097/HCO.0000000000000725] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
40 Zareba L, Fitas A, Wolska M, Junger E, Eyileten C, Wicik Z, De Rosa S, Siller-Matula JM, Postula M. MicroRNAs and Long Noncoding RNAs in Coronary Artery Disease: New and Potential Therapeutic Targets. Cardiol Clin 2020;38:601-17. [PMID: 33036721 DOI: 10.1016/j.ccl.2020.07.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
41 Xiao J, Lu Y, Yang X. THRIL mediates endothelial progenitor cells autophagy via AKT pathway and FUS. Mol Med 2020;26:86. [PMID: 32907536 DOI: 10.1186/s10020-020-00201-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
42 Wang B, Yan S, Yi Y, Huang Y, Deng Z, Zhang Y, Zheng Q, Xie H, Li J. Purified Vitexin Compound 1 Inhibits UVA-Induced Cellular Senescence in Human Dermal Fibroblasts by Binding Mitogen-Activated Protein Kinase 1. Front Cell Dev Biol 2020;8:691. [PMID: 32850814 DOI: 10.3389/fcell.2020.00691] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
43 Niu S, Xu L, Yuan Y, Yang S, Ning H, Qin X, Xin P, Yuan D, Jiao J, Zhao Y. Effect of down-regulated miR-15b-5p expression on arrhythmia and myocardial apoptosis after myocardial ischemia reperfusion injury in mice. Biochem Biophys Res Commun 2020;530:54-9. [PMID: 32828315 DOI: 10.1016/j.bbrc.2020.06.111] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
44 Jiao Y, Li W, Wang W, Tong X, Xia R, Fan J, Du J, Zhang C, Shi X. Platelet-derived exosomes promote neutrophil extracellular trap formation during septic shock. Crit Care 2020;24:380. [PMID: 32600436 DOI: 10.1186/s13054-020-03082-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 35] [Article Influence: 7.5] [Reference Citation Analysis]
45 Kraczkowska W, Jagodziński PP. The Long Non-Coding RNA Landscape of Atherosclerotic Plaques. Mol Diagn Ther 2019;23:735-49. [PMID: 31602567 DOI: 10.1007/s40291-019-00427-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
46 Du P, Wang J, Han Y, Feng J. Blocking the LncRNA MALAT1/miR-224-5p/NLRP3 Axis Inhibits the Hippocampal Inflammatory Response in T2DM With OSA. Front Cell Neurosci 2020;14:97. [PMID: 32477065 DOI: 10.3389/fncel.2020.00097] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
47 Su M, Niu Y, Dang Q, Qu J, Zhu D, Tang Z, Gou D. Circulating microRNA profiles based on direct S-Poly(T)Plus assay for detection of coronary heart disease. J Cell Mol Med 2020;24:5984-97. [PMID: 32343493 DOI: 10.1111/jcmm.15001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
48 Zhang YF, Meng LB, Hao ML, Yang JF, Zou T. Identification of Co-expressed Genes Between Atrial Fibrillation and Stroke. Front Neurol 2020;11:184. [PMID: 32265825 DOI: 10.3389/fneur.2020.00184] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
49 Hueso M, Mallén A, Casas Á, Guiteras J, Sbraga F, Blasco-Lucas A, Lloberas N, Torras J, Cruzado JM, Navarro E. Integrated miRNA/mRNA Counter-Expression Analysis Highlights Oxidative Stress-Related Genes CCR7 and FOXO1 as Blood Markers of Coronary Arterial Disease. Int J Mol Sci 2020;21:E1943. [PMID: 32178422 DOI: 10.3390/ijms21061943] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
50 Mou X, Wang J, Wang L, Wang S. Correlation Between Single Nucleotide Polymorphisms of the rs664589 Locus in the Long-Chain Noncoding RNA Lung Adenocarcinoma Metastasis-Associated Gene 1, Hypertension, and Its Mechanism. Genet Test Mol Biomarkers 2020;24:120-30. [PMID: 32109146 DOI: 10.1089/gtmb.2019.0193] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
51 You G, Long X, Song F, Huang J, Tian M, Xiao Y, Deng S, Wu Q. Metformin Activates the AMPK-mTOR Pathway by Modulating lncRNA TUG1 to Induce Autophagy and Inhibit Atherosclerosis. Drug Des Devel Ther 2020;14:457-68. [PMID: 32099330 DOI: 10.2147/DDDT.S233932] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
52 Yan Y, Song D, Wu J, Wang J. Long Non-Coding RNAs Link Oxidized Low-Density Lipoprotein With the Inflammatory Response of Macrophages in Atherogenesis. Front Immunol 2020;11:24. [PMID: 32082313 DOI: 10.3389/fimmu.2020.00024] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
53 Li G, Zheng P, Wang H, Ai Y, Mao X. Long Non-Coding RNA TUG1 Modulates Proliferation, Migration, And Invasion Of Acute Myeloid Leukemia Cells Via Regulating miR-370-3p/MAPK1/ERK. Onco Targets Ther 2019;12:10375-88. [PMID: 31819520 DOI: 10.2147/OTT.S217795] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
54 Lin D, Wang L, Yan S, Zhang Q, Zhang JH, Shao A. The Role of Oxidative Stress in Common Risk Factors and Mechanisms of Cardio-Cerebrovascular Ischemia and Depression. Oxid Med Cell Longev 2019;2019:2491927. [PMID: 32148646 DOI: 10.1155/2019/2491927] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
55 Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. Journal of Molecular and Cellular Cardiology 2019;136:27-41. [DOI: 10.1016/j.yjmcc.2019.09.001] [Cited by in Crossref: 61] [Cited by in F6Publishing: 122] [Article Influence: 20.3] [Reference Citation Analysis]