BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Eng JJ, Tang PF. Gait training strategies to optimize walking ability in people with stroke: a synthesis of the evidence. Expert Rev Neurother 2007;7:1417-36. [PMID: 17939776 DOI: 10.1586/14737175.7.10.1417] [Cited by in Crossref: 171] [Cited by in F6Publishing: 140] [Article Influence: 11.4] [Reference Citation Analysis]
Number Citing Articles
1 Ernster AE, Park SH, Yacoubi B, Christou EA, Casamento-Moran A, Singer ML, Humbert IA. Motor transfer from the corticospinal to the corticobulbar pathway. Physiol Behav 2018;191:155-61. [PMID: 29678601 DOI: 10.1016/j.physbeh.2018.04.016] [Reference Citation Analysis]
2 Puentes S, Kadone H, Watanabe H, Ueno T, Yamazaki M, Sankai Y, Marushima A, Suzuki K. Reshaping of Bilateral Gait Coordination in Hemiparetic Stroke Patients After Early Robotic Intervention. Front Neurosci 2018;12:719. [PMID: 30356738 DOI: 10.3389/fnins.2018.00719] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
3 Gandolla M, Guanziroli E, D'Angelo A, Cannaviello G, Molteni F, Pedrocchi A. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population. Front Neurorobot 2018;12:10. [PMID: 29615890 DOI: 10.3389/fnbot.2018.00010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
4 Khoo IH, Marayong P, Krishnan V, Balagtas M, Rojas O, Leyba K. Real-time biofeedback device for gait rehabilitation of post-stroke patients. Biomed Eng Lett 2017;7:287-98. [PMID: 30603178 DOI: 10.1007/s13534-017-0036-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Scrivener K, Dorsch S, McCluskey A, Schurr K, Graham PL, Cao Z, Shepherd R, Tyson S. Bobath therapy is inferior to task-specific training and not superior to other interventions in improving lower limb activities after stroke: a systematic review. J Physiother 2020;66:225-35. [PMID: 33069609 DOI: 10.1016/j.jphys.2020.09.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Langhammer B, Lindmark B, Stanghelle JK. Baseline walking ability as an indicator of overall walking ability and ADL at 3, 6, and 12 months after acute stroke. European Journal of Physiotherapy. [DOI: 10.1080/21679169.2021.1872700] [Reference Citation Analysis]
7 Oppewal A, Hilgenkamp TIM. The association between gait and physical fitness in adults with intellectual disabilities: Gait and physical fitness in adults with intellectual disabilities. Journal of Intellectual Disability Research 2018;62:454-66. [DOI: 10.1111/jir.12484] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
8 Ghai S, Ghai I, Schmitz G, Effenberg AO. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis. Sci Rep 2018;8:506. [PMID: 29323122 DOI: 10.1038/s41598-017-16232-5] [Cited by in Crossref: 99] [Cited by in F6Publishing: 81] [Article Influence: 24.8] [Reference Citation Analysis]
9 Esquenazi A, Brashear A, Deltombe T, Rudzinska-Bar M, Krawczyk M, Skoromets A, O'Dell MW, Grandoulier AS, Vilain C, Picaut P, Gracies JM. The Effect of Repeated abobotulinumtoxinA (Dysport®) Injections on Walking Velocity in Persons with Spastic Hemiparesis Caused by Stroke or Traumatic Brain Injury. PM R 2021;13:488-95. [PMID: 32741133 DOI: 10.1002/pmrj.12459] [Reference Citation Analysis]
10 Yoo GE, Kim SJ. Rhythmic Auditory Cueing in Motor Rehabilitation for Stroke Patients: Systematic Review and Meta-Analysis. J Music Ther 2016;53:149-77. [PMID: 27084833 DOI: 10.1093/jmt/thw003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 7.3] [Reference Citation Analysis]
11 Mikolajczyk T, Ciobanu I, Badea DI, Iliescu A, Pizzamiglio S, Schauer T, Seel T, Seiciu PL, Turner DL, Berteanu M. Advanced technology for gait rehabilitation: An overview. Advances in Mechanical Engineering 2018;10:168781401878362. [DOI: 10.1177/1687814018783627] [Cited by in Crossref: 31] [Cited by in F6Publishing: 7] [Article Influence: 7.8] [Reference Citation Analysis]
12 Eicher C, Haesner M, Spranger M, Kuzmicheva O, Gräser A, Steinhagen-Thiessen E. Usability and acceptability by a younger and older user group regarding a mobile robot-supported gait rehabilitation system. Assist Technol 2019;31:25-33. [PMID: 28700324 DOI: 10.1080/10400435.2017.1352051] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
13 Cazalets JR, Bestaven E, Doat E, Baudier MP, Gallot C, Amestoy A, Bouvard M, Guillaud E, Guillain I, Grech E, Van-gils J, Fergelot P, Fraisse S, Taupiac E, Arveiler B, Lacombe D. Evaluation of Motor Skills in Children with Rubinstein–Taybi Syndrome. J Autism Dev Disord 2017;47:3321-32. [DOI: 10.1007/s10803-017-3259-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
14 Borghese NA, Murray D, Paraschiv-ionescu A, de Bruin ED, Bulgheroni M, Steblin A, Luft A, Parra C. Rehabilitation at Home: A Comprehensive Technological Approach. In: Ma M, Jain LC, Anderson P, editors. Virtual, Augmented Reality and Serious Games for Healthcare 1. Berlin: Springer Berlin Heidelberg; 2014. pp. 289-319. [DOI: 10.1007/978-3-642-54816-1_16] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
15 Afzal T, Tseng S, Lincoln JA, Kern M, Francisco GE, Chang S. Exoskeleton-assisted Gait Training in Persons With Multiple Sclerosis: A Single-Group Pilot Study. Archives of Physical Medicine and Rehabilitation 2020;101:599-606. [DOI: 10.1016/j.apmr.2019.10.192] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
16 Damiano DL. Rehabilitative therapies in cerebral palsy: the good, the not as good, and the possible. J Child Neurol 2009;24:1200-4. [PMID: 19525491 DOI: 10.1177/0883073809337919] [Cited by in Crossref: 57] [Cited by in F6Publishing: 46] [Article Influence: 4.4] [Reference Citation Analysis]
17 Krishnan V, Khoo I, Marayong P, DeMars K, Cormack J. Gait Training in Chronic Stroke Using Walk-Even Feedback Device: A Pilot Study. Neurosci J 2016;2016:6808319. [PMID: 28003995 DOI: 10.1155/2016/6808319] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
18 Huber SK, Knols RH, Arnet P, de Bruin ED. Motor-cognitive intervention concepts can improve gait in chronic stroke, but their effect on cognitive functions is unclear: A systematic review with meta-analyses. Neurosci Biobehav Rev 2021:S0149-7634(21)00506-6. [PMID: 34815131 DOI: 10.1016/j.neubiorev.2021.11.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Stamuli E, Torgerson D, Northgraves M, Ronaldson S, Cherry L. Identifying the primary outcome for a randomised controlled trial in rheumatoid arthritis: the role of a discrete choice experiment. J Foot Ankle Res 2017;10:57. [PMID: 29270231 DOI: 10.1186/s13047-017-0240-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
20 Barbosa AM, Carvalho JCM, Gonçalves RS. Cable-driven lower limb rehabilitation robot. J Braz Soc Mech Sci Eng 2018;40. [DOI: 10.1007/s40430-018-1172-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 2] [Article Influence: 4.8] [Reference Citation Analysis]
21 Mudge S, Barber PA, Stott NS. Circuit-Based Rehabilitation Improves Gait Endurance but Not Usual Walking Activity in Chronic Stroke: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation 2009;90:1989-96. [DOI: 10.1016/j.apmr.2009.07.015] [Cited by in Crossref: 85] [Cited by in F6Publishing: 78] [Article Influence: 6.5] [Reference Citation Analysis]
22 Bowden MG, Behrman AL, Neptune RR, Gregory CM, Kautz SA. Locomotor Rehabilitation of Individuals With Chronic Stroke: Difference Between Responders and Nonresponders. Archives of Physical Medicine and Rehabilitation 2013;94:856-62. [DOI: 10.1016/j.apmr.2012.11.032] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 6.9] [Reference Citation Analysis]
23 Rasouli F, Kim SH, Reed KB. Superposition principle applies to human walking with two simultaneous interventions. Sci Rep 2021;11:7465. [PMID: 33811243 DOI: 10.1038/s41598-021-86840-9] [Reference Citation Analysis]
24 Bethoux F, Rogers HL, Nolan KJ, Abrams GM, Annaswamy TM, Brandstater M, Browne B, Burnfield JM, Feng W, Freed MJ, Geis C, Greenberg J, Gudesblatt M, Ikramuddin F, Jayaraman A, Kautz SA, Lutsep HL, Madhavan S, Meilahn J, Pease WS, Rao N, Seetharama S, Sethi P, Turk MA, Wallis RA, Kufta C. The Effects of Peroneal Nerve Functional Electrical Stimulation Versus Ankle-Foot Orthosis in Patients With Chronic Stroke: A Randomized Controlled Trial. Neurorehabil Neural Repair 2014;28:688-97. [DOI: 10.1177/1545968314521007] [Cited by in Crossref: 63] [Cited by in F6Publishing: 45] [Article Influence: 7.9] [Reference Citation Analysis]
25 Abe H, Kadowaki K, Tsujimoto N, Okanuka T. A Narrative Review of Alternate Gait Training Using Knee-ankle-foot Orthosis in Stroke Patients with Severe Hemiparesis. Phys Ther Res 2021;24:195-203. [PMID: 35036252 DOI: 10.1298/ptr.R0015] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Washabaugh EP, Krishnan C. Functional resistance training methods for targeting patient-specific gait deficits: A review of devices and their effects on muscle activation, neural control, and gait mechanics. Clinical Biomechanics 2022. [DOI: 10.1016/j.clinbiomech.2022.105629] [Reference Citation Analysis]
27 Bishnoi A, Lee R, Hu Y, Mahoney JR, Hernandez ME. Effect of Treadmill Training Interventions on Spatiotemporal Gait Parameters in Older Adults with Neurological Disorders: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int J Environ Res Public Health 2022;19:2824. [PMID: 35270516 DOI: 10.3390/ijerph19052824] [Reference Citation Analysis]
28 Ying J, Chen W, Wang D, Wang Z. ASSESSING THE POTENTIAL INFLUENCE OF DIFFERENT WALKING STRATEGIES ON PLANTAR PRESSURE DISTRIBUTION TRIGGERED BY A PORTABLE BIOFEEDBACK-BASED GAIT TRAINING DEVICE. J Mech Med Biol 2020;20:2040030. [DOI: 10.1142/s0219519420400308] [Reference Citation Analysis]
29 Valentín-Gudiol M, Mattern-Baxter K, Girabent-Farrés M, Bagur-Calafat C, Hadders-Algra M, Angulo-Barroso RM. Treadmill interventions in children under six years of age at risk of neuromotor delay. Cochrane Database Syst Rev 2017;7:CD009242. [PMID: 28755534 DOI: 10.1002/14651858.CD009242.pub3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
30 Cesar GM, Buster TW, Mohammadzadeh Gonabadi A, M Burnfield J. Kinematic and muscle demand similarities between pediatric-modified motor-assisted elliptical training at fast speed and fast overground walking: Real-world implications for pediatric gait rehabilitation. Journal of Electromyography and Kinesiology 2022. [DOI: 10.1016/j.jelekin.2022.102639] [Reference Citation Analysis]
31 Deutsch JE. Using virtual reality to improve walking post-stroke: translation to individuals with diabetes. J Diabetes Sci Technol 2011;5:309-14. [PMID: 21527098 DOI: 10.1177/193229681100500216] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
32 Awosika OO, Chan D, Rizik BA, Sucharew HJ, Boyne P, Bhattacharya A, Dunning K, Kissela BM. Serial Backward Locomotor Treadmill Training Improves Bidirectional Walking Performance in Chronic Stroke. Front Neurol 2022;13:800757. [PMID: 35359661 DOI: 10.3389/fneur.2022.800757] [Reference Citation Analysis]
33 Ghai S, Ghai I, Effenberg AO. Effect of Rhythmic Auditory Cueing on Aging Gait: A Systematic Review and Meta-Analysis. Aging Dis 2018;9:901-23. [PMID: 30271666 DOI: 10.14336/AD.2017.1031] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 6.8] [Reference Citation Analysis]
34 Feldman PH, Mcdonald MV, Onorato N, Stein J, Williams O. Feasibility of deploying peer coaches to mentor frontline home health aides and promote mobility among individuals recovering from a stroke: pilot test of a randomized controlled trial. Pilot Feasibility Stud 2022;8. [DOI: 10.1186/s40814-022-00979-4] [Reference Citation Analysis]
35 Khallaf ME, Gabr AM, Fayed EE. Effect of Task Specific Exercises, Gait Training, and Visual Biofeedback on Equinovarus Gait among Individuals with Stroke: Randomized Controlled Study. Neurol Res Int 2014;2014:693048. [PMID: 25538853 DOI: 10.1155/2014/693048] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
36 Olawale O, Jaja S, Anigbogu C, Appiah-kubi K, Jones-okai D. Exercise training improves walking function in an African group of stroke survivors: a randomized controlled trial. Clin Rehabil 2011;25:442-50. [DOI: 10.1177/0269215510389199] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
37 Olawale OA, Usman JS, Oke KI, Osundiya OC. Evaluation of Predictive Factors Influencing Community Reintegration in Adult Patients with Stroke. J Neurosci Rural Pract 2018;9:6-10. [PMID: 29456337 DOI: 10.4103/jnrp.jnrp_386_17] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
38 Mun KR, Yeo BBS, Guo Z, Chung SC, Yu H. Resistance training using a novel robotic walker for over-ground gait rehabilitation: a preliminary study on healthy subjects. Med Biol Eng Comput 2017;55:1873-81. [PMID: 28321683 DOI: 10.1007/s11517-017-1634-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
39 Wang Y, Mukaino M, Hirano S, Tanikawa H, Yamada J, Ohtsuka K, Ii T, Saitoh E, Otaka Y. Persistent Effect of Gait Exercise Assist Robot Training on Gait Ability and Lower Limb Function of Patients With Subacute Stroke: A Matched Case-Control Study With Three-Dimensional Gait Analysis. Front Neurorobot 2020;14:42. [PMID: 32848691 DOI: 10.3389/fnbot.2020.00042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Vadas D, Elkins J. Habituation to a unilateral walking device after stroke: new considerations for an old habit, a case series. International Journal of Therapy and Rehabilitation 2021;28:1-8. [DOI: 10.12968/ijtr.2020.0132] [Reference Citation Analysis]
41 Mohan DM, Khandoker AH, Wasti SA, Ismail Ibrahim Ismail Alali S, Jelinek HF, Khalaf K. Assessment Methods of Post-stroke Gait: A Scoping Review of Technology-Driven Approaches to Gait Characterization and Analysis. Front Neurol 2021;12:650024. [PMID: 34168608 DOI: 10.3389/fneur.2021.650024] [Reference Citation Analysis]
42 Damiano DL, Alter KE, Chambers H. New clinical and research trends in lower extremity management for ambulatory children with cerebral palsy. Phys Med Rehabil Clin N Am 2009;20:469-91. [PMID: 19643348 DOI: 10.1016/j.pmr.2009.04.005] [Cited by in Crossref: 62] [Cited by in F6Publishing: 46] [Article Influence: 4.8] [Reference Citation Analysis]
43 Hobbs B, Artemiadis P. A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in Gait Rehabilitation. Front Neurorobot 2020;14:19. [PMID: 32351377 DOI: 10.3389/fnbot.2020.00019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
44 Vanoglio F, Olivares A, Bonometti GP, Damiani S, Gaiani M, Comini L, Luisa A. A decision making algorithm for rehabilitation after stroke: A guide to choose an appropriate and safe treadmill training. NeuroRehabilitation 2021;49:75-85. [PMID: 34057102 DOI: 10.3233/NRE-210065] [Reference Citation Analysis]
45 Kim WS, Choi H, Jung JW, Yoon JS, Jeoung JH. Asymmetry and Variability Should Be Included in the Assessment of Gait Function in Poststroke Hemiplegia With Independent Ambulation During Early Rehabilitation. Arch Phys Med Rehabil 2021;102:611-8. [PMID: 33161006 DOI: 10.1016/j.apmr.2020.10.115] [Reference Citation Analysis]
46 Chang MC, Lee BJ, Joo NY, Park D. The parameters of gait analysis related to ambulatory and balance functions in hemiplegic stroke patients: a gait analysis study. BMC Neurol 2021;21:38. [PMID: 33504334 DOI: 10.1186/s12883-021-02072-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Mansfield A, Inness EL, Mcilroy WE. Stroke. Handb Clin Neurol 2018;159:205-28. [PMID: 30482315 DOI: 10.1016/B978-0-444-63916-5.00013-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
48 Huizenga D, Rashford L, Darcy B, Lundin E, Medas R, Shultz ST, DuBose E, Reed KB. Wearable gait device for stroke gait rehabilitation at home. Top Stroke Rehabil 2021;28:443-55. [PMID: 33261520 DOI: 10.1080/10749357.2020.1834272] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Lee KB, Lim SH, Ko EH, Kim YS, Lee KS, Hwang BY. Factors related to community ambulation in patients with chronic stroke. Topics in Stroke Rehabilitation 2015;22:63-71. [DOI: 10.1179/1074935714z.0000000001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 3.1] [Reference Citation Analysis]
50 Nankaku M, Tanaka H, Ikeguchi R, Kikuchi T, Miyamoto S, Matsuda S. Effects of walking distance over robot-assisted training on walking ability in chronic stroke patients. J Clin Neurosci 2020;81:279-83. [PMID: 33222930 DOI: 10.1016/j.jocn.2020.09.067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Hachisuka K, Ochi M, Kikuchi T, Saeki S. Clinical effectiveness of peroneal nerve functional electrical stimulation in chronic stroke patients with hemiplegia (PLEASURE): A multicentre, prospective, randomised controlled trial. Clin Rehabil 2021;35:367-77. [PMID: 33103916 DOI: 10.1177/0269215520966702] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Van Criekinge T, Truijen S, Schröder J, Maebe Z, Blanckaert K, van der Waal C, Vink M, Saeys W. The effectiveness of trunk training on trunk control, sitting and standing balance and mobility post-stroke: a systematic review and meta-analysis. Clin Rehabil 2019;33:992-1002. [DOI: 10.1177/0269215519830159] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
53 Chen L, Lo WL, Mao YR, Ding MH, Lin Q, Li H, Zhao JL, Xu ZQ, Bian RH, Huang DF. Effect of Virtual Reality on Postural and Balance Control in Patients with Stroke: A Systematic Literature Review. Biomed Res Int 2016;2016:7309272. [PMID: 28053988 DOI: 10.1155/2016/7309272] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 5.7] [Reference Citation Analysis]
54 Nishiyori R, Lai B, Lee DK, Vrongistinos K, Jung T. The Use of Cuff Weights for Aquatic Gait Training in People Post-Stroke with Hemiparesis: Aquatic Gait Training with Cuff Weight in Stroke. Physiother Res Int 2016;21:47-53. [DOI: 10.1002/pri.1617] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
55 Aprile I, Iacovelli C, Goffredo M, Cruciani A, Galli M, Simbolotti C, Pecchioli C, Padua L, Galafate D, Pournajaf S, Franceschini M. Efficacy of end-effector Robot-Assisted Gait Training in subacute stroke patients: Clinical and gait outcomes from a pilot bi-centre study. NRE 2019;45:201-12. [DOI: 10.3233/nre-192778] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
56 Honado AS, Atigossou OLG, Daneault JF, Roy JS, Batcho CS. Relationships between overall physical activity and step counts in able-bodied adults and stroke survivors in developing countries: a cross-sectional study. Disabil Rehabil 2022;:1-8. [PMID: 35260007 DOI: 10.1080/09638288.2022.2046189] [Reference Citation Analysis]
57 Timmermans C, Roerdink M, van Ooijen MW, Meskers CG, Janssen TW, Beek PJ. Walking adaptability therapy after stroke: study protocol for a randomized controlled trial. Trials 2016;17:425. [PMID: 27565425 DOI: 10.1186/s13063-016-1527-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
58 Dong Y, Weng L, Hu Y, Mao Y, Zhang Y, Lu Z, Shi T, Du R, Wang W, Wang J, Wang X. Exercise for Stroke Rehabilitation: A Bibliometric Analysis of Global Research From 2001 to 2021. Front Aging Neurosci 2022;14:876954. [DOI: 10.3389/fnagi.2022.876954] [Reference Citation Analysis]
59 Park K, Kim W. The Effects of Ankle Strategy Exercise on Balance of Patients with Hemiplegia. Journal of the Korean Society of Physical Medicine 2014;9:75-82. [DOI: 10.13066/kspm.2014.9.1.75] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
60 Cano-de-la-Cuerda R, Molero-Sánchez A, Carratalá-Tejada M, Alguacil-Diego IM, Molina-Rueda F, Miangolarra-Page JC, Torricelli D. Theories and control models and motor learning: clinical applications in neuro-rehabilitation. Neurologia 2015;30:32-41. [PMID: 22341985 DOI: 10.1016/j.nrl.2011.12.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
61 Morita Y, Ito H, Kawaguchi S, Nishitani K, Nakamura S, Kuriyama S, Ikezoe T, Tsuboyama T, Ichihashi N, Tabara Y, Matsuda F, Matsuda S. Systemic Chronic Diseases Coexist with and Affect Locomotive Syndrome: The Nagahama Study. Mod Rheumatol 2022:roac039. [PMID: 35554562 DOI: 10.1093/mr/roac039] [Reference Citation Analysis]
62 Kang CJ, Chun MH, Lee J, Lee JY. Effects of robot (SUBAR)-assisted gait training in patients with chronic stroke: Randomized controlled trial. Medicine (Baltimore) 2021;100:e27974. [PMID: 35049203 DOI: 10.1097/MD.0000000000027974] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 van den Berg ME, Barr CJ, Mcloughlin JV, Crotty M. Effect of walking on sand on gait kinematics in individuals with multiple sclerosis. Multiple Sclerosis and Related Disorders 2017;16:15-21. [DOI: 10.1016/j.msard.2017.05.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
64 Wada Y, Otaka Y, Mukaino M, Tsujimoto Y, Shiroshita A, Kawate N, Taito S. The effect of ankle-foot orthosis on ankle kinematics in individuals after stroke: A systematic review and meta-analysis. PM R 2021. [PMID: 34369101 DOI: 10.1002/pmrj.12687] [Reference Citation Analysis]
65 Gupta AD, Chu WH, Howell S, Chakraborty S, Koblar S, Visvanathan R, Cameron I, Wilson D. A systematic review: efficacy of botulinum toxin in walking and quality of life in post-stroke lower limb spasticity. Syst Rev 2018;7:1. [PMID: 29304876 DOI: 10.1186/s13643-017-0670-9] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
66 Song CN, Stenum J, Leech KA, Keller CK, Roemmich RT. Unilateral step training can drive faster learning of novel gait patterns. Sci Rep 2020;10:18628. [PMID: 33122783 DOI: 10.1038/s41598-020-75839-3] [Reference Citation Analysis]
67 Kwong P, Chan K, Choi H, Guo H, Tam Y, Tao S, Chan Y, Donnelly C. Immediate effects of transcutaneous electrical nerve stimulation on gait patterns in chronic stroke survivors: A single group, pretest-posttest clinical trial. Human Movement Science 2022;83:102948. [DOI: 10.1016/j.humov.2022.102948] [Reference Citation Analysis]
68 Holschneider DP, Maarek JM. Brain maps on the go: functional imaging during motor challenge in animals. Methods 2008;45:255-61. [PMID: 18554522 DOI: 10.1016/j.ymeth.2008.04.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
69 Kakuda W, Abo M, Watanabe S, Momosaki R, Hashimoto G, Nakayama Y, Kiyama A, Yoshida H. High-frequency rTMS applied over bilateral leg motor areas combined with mobility training for gait disturbance after stroke: A preliminary study. Brain Injury 2013;27:1080-6. [DOI: 10.3109/02699052.2013.794973] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
70 Knutson JS, Fu MJ, Sheffler LR, Chae J. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia. Phys Med Rehabil Clin N Am 2015;26:729-45. [PMID: 26522909 DOI: 10.1016/j.pmr.2015.06.002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 6.4] [Reference Citation Analysis]
71 Calabrò RS, Naro A, Russo M, Bramanti P, Carioti L, Balletta T, Buda A, Manuli A, Filoni S, Bramanti A. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial. J Neuroeng Rehabil 2018;15:35. [PMID: 29695280 DOI: 10.1186/s12984-018-0377-8] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 11.5] [Reference Citation Analysis]
72 Wright A, Stone K, Lambrick D, Fryer S, Stoner L, Tasker E, Jobson S, Smith G, Batten J, Batey J, Hudson V, Hobbs H, Faulkner J. A Community-Based, Bionic Leg Rehabilitation Program for Patients with Chronic Stroke: Clinical Trial Protocol. J Stroke Cerebrovasc Dis 2018;27:372-80. [PMID: 29097056 DOI: 10.1016/j.jstrokecerebrovasdis.2017.09.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
73 Carvalho C, Sunnerhagen KS, Willén C. Walking performance and muscle strength in the later stage poststroke: a nonlinear relationship. Arch Phys Med Rehabil 2013;94:845-50. [PMID: 23219614 DOI: 10.1016/j.apmr.2012.11.034] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
74 Mendes LA, Lima IN, Souza T, do Nascimento GC, Resqueti VR, Fregonezi GA. Motor neuroprosthesis for promoting recovery of function after stroke. Cochrane Database Syst Rev 2020;1:CD012991. [PMID: 31935047 DOI: 10.1002/14651858.CD012991.pub2] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Chang SH, Afzal T, Berliner J, Francisco GE; TIRR SCI Clinical Exoskeleton Group. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study. Pilot Feasibility Stud 2018;4:62. [PMID: 29556414 DOI: 10.1186/s40814-018-0247-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
76 Awad LN, Reisman DS, Kesar TM, Binder-Macleod SA. Targeting paretic propulsion to improve poststroke walking function: a preliminary study. Arch Phys Med Rehabil 2014;95:840-8. [PMID: 24378803 DOI: 10.1016/j.apmr.2013.12.012] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 5.4] [Reference Citation Analysis]
77 Kim S, Cho S. Effects of H-Reflex Onset Latency on Gait in Elderly and Hemiplegic Individuals. Medicina 2022;58:716. [DOI: 10.3390/medicina58060716] [Reference Citation Analysis]
78 Lee HY, Park JH, Kim TW. Comparisons between Locomat and Walkbot robotic gait training regarding balance and lower extremity function among non-ambulatory chronic acquired brain injury survivors. Medicine (Baltimore) 2021;100:e25125. [PMID: 33950915 DOI: 10.1097/MD.0000000000025125] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
79 Valentin-Gudiol M, Mattern-Baxter K, Girabent-Farrés M, Bagur-Calafat C, Hadders-Algra M, Angulo-Barroso RM. Treadmill interventions with partial body weight support in children under six years of age at risk of neuromotor delay. Cochrane Database Syst Rev 2011;:CD009242. [PMID: 22161449 DOI: 10.1002/14651858.CD009242.pub2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
80 Washabaugh EP, Claflin ES, Gillespie RB, Krishnan C. A Novel Application of Eddy Current Braking for Functional Strength Training During Gait. Ann Biomed Eng 2016;44:2760-73. [PMID: 26817456 DOI: 10.1007/s10439-016-1553-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
81 Swinnen E, Beckwée D, Meeusen R, Baeyens J, Kerckhofs E. Does Robot-Assisted Gait Rehabilitation Improve Balance in Stroke Patients? A Systematic Review. Topics in Stroke Rehabilitation 2014;21:87-100. [DOI: 10.1310/tsr2102-87] [Cited by in Crossref: 59] [Cited by in F6Publishing: 37] [Article Influence: 7.4] [Reference Citation Analysis]
82 DeMark LA, Fox EJ, Manes MR, Conroy C, Rose DK. The 3-Meter Backward Walk Test (3MBWT): Reliability and validity in individuals with subacute and chronic stroke. Physiother Theory Pract 2022;:1-8. [PMID: 35658807 DOI: 10.1080/09593985.2022.2085638] [Reference Citation Analysis]
83 Tang A, Eng JJ, Rand D. Relationship between perceived and measured changes in walking after stroke. J Neurol Phys Ther 2012;36:115-21. [PMID: 22850336 DOI: 10.1097/NPT.0b013e318262dbd0] [Cited by in Crossref: 52] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
84 Bruni MF, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS. What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis. J Clin Neurosci 2018;48:11-7. [PMID: 29208476 DOI: 10.1016/j.jocn.2017.10.048] [Cited by in Crossref: 72] [Cited by in F6Publishing: 52] [Article Influence: 14.4] [Reference Citation Analysis]
85 Ii T, Hirano S, Tanabe S, Saitoh E, Yamada J, Mukaino M, Watanabe M, Sonoda S, Otaka Y. Robot-assisted Gait Training Using Welwalk in Hemiparetic Stroke Patients: An Effectiveness Study with Matched Control. J Stroke Cerebrovasc Dis 2020;29:105377. [PMID: 33091753 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105377] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 van de Port I, Punt M, Meijer JW. Walking activity and its determinants in free-living ambulatory people in a chronic phase after stroke: a cross-sectional study. Disabil Rehabil 2020;42:636-41. [PMID: 30326756 DOI: 10.1080/09638288.2018.1504327] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
87 Kimura T. Interaction between locomotion and three subcategories for patients with stroke demonstrating fewer than 37 points on the total functional independence measure upon admission to the recovery ward. J Phys Ther Sci 2020;32:516-23. [PMID: 32884173 DOI: 10.1589/jpts.32.516] [Reference Citation Analysis]
88 Barreto L, Shon A, Knox D, Song H, Park H, Kim J. Motorized Treadmill and Optical Recording System for Gait Analysis of Grasshoppers. Sensors (Basel) 2021;21:5953. [PMID: 34502844 DOI: 10.3390/s21175953] [Reference Citation Analysis]
89 Ha SY, Han JH, Ko YJ, Sung YH. Ankle exercise with functional electrical stimulation affects spasticity and balance in stroke patients. J Exerc Rehabil 2020;16:496-502. [PMID: 33457385 DOI: 10.12965/jer.2040780.390] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 Guediri A, Chaparro D, Borel B, Daviet JC, Compagnat M, Mandigout S. The effect of a home-based coaching program on heart rate variability in subacute stroke patients: a randomized controlled trial. Int J Rehabil Res 2022. [PMID: 35502452 DOI: 10.1097/MRR.0000000000000529] [Reference Citation Analysis]
91 Chia FS, Kuys S, Low Choy N. Sensory retraining of the leg after stroke: systematic review and meta-analysis. Clin Rehabil 2019;33:964-79. [PMID: 30897960 DOI: 10.1177/0269215519836461] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
92 Thibaut A, Di Perri C, Heine L, Moissenet F, Chantraine F, Schreiber C, Filipetti P, Martial C, Annen J, Laureys S, Gosseries O. Neuroplastic changes mediate motor recovery with implanted peroneal nerve stimulator in individuals with chronic stroke: An open-label multimodal pilot study. Ann Phys Rehabil Med 2021;64:101358. [PMID: 32061768 DOI: 10.1016/j.rehab.2020.01.004] [Reference Citation Analysis]
93 Sandroff BM, Sosnoff JJ, Motl RW. Physical fitness, walking performance, and gait in multiple sclerosis. J Neurol Sci 2013;328:70-6. [PMID: 23522499 DOI: 10.1016/j.jns.2013.02.021] [Cited by in Crossref: 70] [Cited by in F6Publishing: 62] [Article Influence: 7.8] [Reference Citation Analysis]
94 Sánchez N, Winstein CJ. Lost in Translation: Simple Steps in Experimental Design of Neurorehabilitation-Based Research Interventions to Promote Motor Recovery Post-Stroke. Front Hum Neurosci 2021;15:644335. [PMID: 33958994 DOI: 10.3389/fnhum.2021.644335] [Reference Citation Analysis]
95 Tang A, Tao A, Soh M, Tam C, Tan H, Thompson J, Eng JJ. The effect of interventions on balance self-efficacy in the stroke population: a systematic review and meta-analysis. Clin Rehabil 2015;29:1168-77. [PMID: 25681409 DOI: 10.1177/0269215515570380] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
96 Wonsetler EC, Bowden MG. A systematic review of mechanisms of gait speed change post-stroke. Part 1: spatiotemporal parameters and asymmetry ratios. Top Stroke Rehabil 2017;24:435-46. [PMID: 28220715 DOI: 10.1080/10749357.2017.1285746] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 6.6] [Reference Citation Analysis]
97 D'souza J, Natarajan DM, Kumaran D DS. Does the Environment Cause Changes in Hemiparetic Lower Limb Muscle Activity and Gait Velocity During Walking in Stroke Survivors? J Stroke Cerebrovasc Dis 2020;29:105174. [PMID: 32912567 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105174] [Reference Citation Analysis]
98 Ifejika-Jones NL, Barrett AM. Rehabilitation--emerging technologies, innovative therapies, and future objectives. Neurotherapeutics 2011;8:452-62. [PMID: 21706265 DOI: 10.1007/s13311-011-0057-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
99 [DOI: 10.1109/iccas.2016.7832426] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
100 Ishibashi K, Yoshikawa K, Koseki K, Aoyama T, Ishii D, Yamamoto S, Matsuda T, Tomita K, Mutsuzaki H, Kohno Y. Gait Training after Stroke with a Wearable Robotic Device: A Case Report of Further Improvements in Walking Ability after a Recovery Plateau. Prog Rehabil Med 2021;6:20210037. [PMID: 34595360 DOI: 10.2490/prm.20210037] [Reference Citation Analysis]
101 Gonzalez-Suarez CB, Ogerio CGV, Dela Cruz AR, Roxas EA, Fidel BC, Fernandez MRL, Cruz C. Motor Impairment and Its Influence in Gait Velocity and Asymmetry in Community Ambulating Hemiplegic Individuals. Arch Rehabil Res Clin Transl 2021;3:100093. [PMID: 33778469 DOI: 10.1016/j.arrct.2020.100093] [Reference Citation Analysis]
102 Sankaranarayan H, Gupta A, Khanna M, Taly AB, Thennarasu K. Role of ankle foot orthosis in improving locomotion and functional recovery in patients with stroke: A prospective rehabilitation study. J Neurosci Rural Pract 2016;7:544-9. [PMID: 27695234 DOI: 10.4103/0976-3147.185507] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
103 Lin SH, Dionne TP. Interventions to Improve Movement and Functional Outcomes in Adult Stroke Rehabilitation: Review and Evidence Summary. J Particip Med 2018;10:e3. [PMID: 33052128 DOI: 10.2196/jopm.8929] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
104 de Rooij IJM, van de Port IGL, Visser-Meily JMA, Meijer JG. Virtual reality gait training versus non-virtual reality gait training for improving participation in subacute stroke survivors: study protocol of the ViRTAS randomized controlled trial. Trials 2019;20:89. [PMID: 30696491 DOI: 10.1186/s13063-018-3165-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
105 Schiemanck S, Berenpas F, van Swigchem R, van den Munckhof P, de Vries J, Beelen A, Nollet F, Geurts AC. Effects of implantable peroneal nerve stimulation on gait quality, energy expenditure, participation and user satisfaction in patients with post-stroke drop foot using an ankle-foot orthosis. RNN 2015;33:795-807. [DOI: 10.3233/rnn-150501] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
106 Arch ES, Colon S, Silbernagel KG, Crenshaw JR. Evaluating the relationship between gait and clinical measures of plantar flexor function. Journal of Electromyography and Kinesiology 2018;43:41-7. [DOI: 10.1016/j.jelekin.2018.09.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
107 Kang TW, Oh DW, Lee JH, Cynn HS. Rhythmic arm swing integrated into treadmill training in patients with chronic stroke: A single-subject experimental study. Physiother Theory Pract 2018;34:613-21. [PMID: 29336648 DOI: 10.1080/09593985.2017.1423430] [Reference Citation Analysis]
108 Wang R, Tseng H, Liao K, Wang C, Lai K, Yang Y. rTMS Combined With Task-Oriented Training to Improve Symmetry of Interhemispheric Corticomotor Excitability and Gait Performance After Stroke: A Randomized Trial. Neurorehabil Neural Repair 2012;26:222-30. [DOI: 10.1177/1545968311423265] [Cited by in Crossref: 77] [Cited by in F6Publishing: 69] [Article Influence: 7.0] [Reference Citation Analysis]
109 Chua K, Lim WS, Lim PH, Lim CJ, Hoo CM, Chua KC, Chee J, Ong WS, Liu W, Wong CJ. An Exploratory Clinical Study on an Automated, Speed-Sensing Treadmill Prototype With Partial Body Weight Support for Hemiparetic Gait Rehabilitation in Subacute and Chronic Stroke Patients. Front Neurol 2020;11:747. [PMID: 32793109 DOI: 10.3389/fneur.2020.00747] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
110 Poddar R, Rajagopal S, Winter L, Allan AM, Paul S. A peptide mimetic of tyrosine phosphatase STEP as a potential therapeutic agent for treatment of cerebral ischemic stroke. J Cereb Blood Flow Metab 2019;39:1069-84. [PMID: 29215306 DOI: 10.1177/0271678X17747193] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
111 Yousuf S, Atif F, Sayeed I, Tang H, Wang J, Stein DG. Long-term behavioral deficits and recovery after transient ischemia in middle-aged rats: Effects of behavioral testing. RNN 2015;33:251-61. [DOI: 10.3233/rnn-140450] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
112 Park SE, Ho YJ, Chun MH, Choi J, Moon Y. Measurement and Analysis of Gait Pattern during Stair Walk for Improvement of Robotic Locomotion Rehabilitation System. Appl Bionics Biomech 2019;2019:1495289. [PMID: 31737093 DOI: 10.1155/2019/1495289] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
113 Tyson SF, Vail A, Thomas N, Woodward-Nutt K, Plant S, Tyrrell PJ. Bespoke versus off-the-shelf ankle-foot orthosis for people with stroke: randomized controlled trial. Clin Rehabil 2018;32:367-76. [PMID: 28856945 DOI: 10.1177/0269215517728764] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
114 Luo L, Meng H, Wang Z, Zhu S, Yuan S, Wang Y, Wang Q. Effect of high-intensity exercise on cardiorespiratory fitness in stroke survivors: A systematic review and meta-analysis. Ann Phys Rehabil Med 2020;63:59-68. [PMID: 31465865 DOI: 10.1016/j.rehab.2019.07.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
115 Fishbein P, Hutzler Y, Ratmansky M, Treger I, Dunsky A. A Preliminary Study of Dual-Task Training Using Virtual Reality: Influence on Walking and Balance in Chronic Poststroke Survivors. Journal of Stroke and Cerebrovascular Diseases 2019;28:104343. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.104343] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
116 Baronchelli F, Zucchella C, Serrao M, Intiso D, Bartolo M. The Effect of Robotic Assisted Gait Training With Lokomat® on Balance Control After Stroke: Systematic Review and Meta-Analysis. Front Neurol 2021;12:661815. [PMID: 34295298 DOI: 10.3389/fneur.2021.661815] [Reference Citation Analysis]
117 Beaulieu CL, Dijkers MP, Barrett RS, Horn SD, Giuffrida CG, Timpson ML, Carroll DM, Smout RJ, Hammond FM. Occupational, Physical, and Speech Therapy Treatment Activities During Inpatient Rehabilitation for Traumatic Brain Injury. Arch Phys Med Rehabil 2015;96:S222-34.e17. [PMID: 26212399 DOI: 10.1016/j.apmr.2014.10.028] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
118 Koseoglu BF, Dogan A, Tatli HU, Sezgin Ozcan D, Polat CS. Can kinesio tape be used as an ankle training method in the rehabilitation of the stroke patients? Complement Ther Clin Pract 2017;27:46-51. [PMID: 28438279 DOI: 10.1016/j.ctcp.2017.03.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 3.2] [Reference Citation Analysis]
119 Nadeau S, Duclos C, Bouyer L, Richards CL. Guiding task-oriented gait training after stroke or spinal cord injury by means of a biomechanical gait analysis. Prog Brain Res 2011;192:161-80. [PMID: 21763525 DOI: 10.1016/B978-0-444-53355-5.00011-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
120 van Gelder LMA, Barnes A, Wheat JS, Heller BW. The use of biofeedback for gait retraining: A mapping review. Clin Biomech (Bristol, Avon) 2018;59:159-66. [PMID: 30253260 DOI: 10.1016/j.clinbiomech.2018.09.020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
121 Kim J, Kim J, Park K. Gait Training Algorithm of an End-Effector Typed Hybrid Walking Rehabilitation Robot. Int J Precis Eng Manuf 2019;20:1767-75. [DOI: 10.1007/s12541-019-00185-y] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
122 Bowden MG, Embry AE, Gregory CM. Physical therapy adjuvants to promote optimization of walking recovery after stroke. Stroke Res Treat 2011;2011:601416. [PMID: 22013549 DOI: 10.4061/2011/601416] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 0.6] [Reference Citation Analysis]
123 Hsu CC, Huang YK, Kang JH, Ko YF, Liu CW, Jaw FS, Chen SC. Novel design for a dynamic ankle foot orthosis with motion feedback used for training in patients with hemiplegic gait: a pilot study. J Neuroeng Rehabil 2020;17:112. [PMID: 32811516 DOI: 10.1186/s12984-020-00734-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
124 Manuli A, Maggio MG, Latella D, Cannavò A, Balletta T, De Luca R, Naro A, Calabrò RS. Can robotic gait rehabilitation plus Virtual Reality affect cognitive and behavioural outcomes in patients with chronic stroke? A randomized controlled trial involving three different protocols. Journal of Stroke and Cerebrovascular Diseases 2020;29:104994. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.104994] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
125 Esquenazi A, Packel A. Robotic-Assisted Gait Training and Restoration. American Journal of Physical Medicine & Rehabilitation 2012;91:S217-31. [DOI: 10.1097/phm.0b013e31826bce18] [Cited by in Crossref: 40] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
126 Bethoux F, Rogers HL, Nolan KJ, Abrams GM, Annaswamy T, Brandstater M, Browne B, Burnfield JM, Feng W, Freed MJ, Geis C, Greenberg J, Gudesblatt M, Ikramuddin F, Jayaraman A, Kautz SA, Lutsep HL, Madhavan S, Meilahn J, Pease WS, Rao N, Seetharama S, Sethi P, Turk MA, Wallis RA, Kufta C. Long-Term Follow-up to a Randomized Controlled Trial Comparing Peroneal Nerve Functional Electrical Stimulation to an Ankle Foot Orthosis for Patients With Chronic Stroke. Neurorehabil Neural Repair 2015;29:911-22. [DOI: 10.1177/1545968315570325] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
127 Gururaj S, Natarajan M, Balasubramanian CK, Solomon JM. Post-stroke gait training practices in a low resource setting: a cross-sectional survey among Indian physiotherapists. NeuroRehabilitation 2021;48:505-12. [PMID: 33967067 DOI: 10.3233/NRE-210013] [Reference Citation Analysis]
128 Alabdulwahab SS, Ahmad F, Singh H. Effects of Functional Limb Overloading on Symmetrical Weight Bearing, Walking Speed, Perceived Mobility, and Community Participation among Patients with Chronic Stroke. Rehabil Res Pract 2015;2015:241519. [PMID: 26600952 DOI: 10.1155/2015/241519] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
129 Lynch EA, Jones TM, Simpson DB, Fini NA, Kuys SS, Borschmann K, Kramer S, Johnson L, Callisaya ML, Mahendran N, Janssen H, English C; ACTIOnS Collaboration. Activity monitors for increasing physical activity in adult stroke survivors. Cochrane Database Syst Rev 2018;7:CD012543. [PMID: 30051462 DOI: 10.1002/14651858.CD012543.pub2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
130 Li Y, Fan J, Yang J, He C, Li S. Effects of Repetitive Transcranial Magnetic Stimulation on Walking and Balance Function after Stroke: A Systematic Review and Meta-Analysis. Am J Phys Med Rehabil 2018;97:773-81. [PMID: 29734235 DOI: 10.1097/PHM.0000000000000948] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
131 Lim H, Azurdia D, Jeng B, Jung T. Influence of water depth on energy expenditure during aquatic walking in people post stroke. Physiother Res Int 2018;23:e1717. [DOI: 10.1002/pri.1717] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
132 Hu S, Fjeld K, Vasudevan EV, Kuchenbecker KJ. A Brake-Based Overground Gait Rehabilitation Device for Altering Propulsion Impulse Symmetry. Sensors (Basel) 2021;21:6617. [PMID: 34640938 DOI: 10.3390/s21196617] [Reference Citation Analysis]
133 Qurat-Ul-Ain, Malik AN, Haq U, Ali S. Effect of task specific circuit training on Gait parameters and mobility in stroke survivors. Pak J Med Sci 2018;34:1300-3. [PMID: 30344596 DOI: 10.12669/pjms.345.15006] [Reference Citation Analysis]
134 Kim JH, Chung Y, Kim Y, Hwang S. Functional electrical stimulation applied to gluteus medius and tibialis anterior corresponding gait cycle for stroke. Gait Posture 2012;36:65-7. [PMID: 22390959 DOI: 10.1016/j.gaitpost.2012.01.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
135 Mehta S, Pereira S, Viana R, Mays R, Mcintyre A, Janzen S, Teasell RW. Resistance Training for Gait Speed and Total Distance Walked During the Chronic Stage of Stroke: A Meta-Analysis. Topics in Stroke Rehabilitation 2014;19:471-8. [DOI: 10.1310/tsr1906-471] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 4.5] [Reference Citation Analysis]
136 Afzal MR, Pyo S, Oh MK, Park YS, Yoon J. Evaluating the effects of delivering integrated kinesthetic and tactile cues to individuals with unilateral hemiparetic stroke during overground walking. J Neuroeng Rehabil 2018;15:33. [PMID: 29661237 DOI: 10.1186/s12984-018-0372-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
137 Stone AE, Terza MJ, Raffegeau TE, Hass CJ. Walking through the looking glass: Adapting gait patterns with mirror feedback. J Biomech 2019;83:104-9. [PMID: 30503256 DOI: 10.1016/j.jbiomech.2018.11.029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
138 Andreasen SC, Wright TR, Crenshaw JR, Reisman DS, Knarr BA. Relationships of Linear and Non-linear Measurements of Post-stroke Walking Activity and Their Relationship to Weather. Front Sports Act Living 2020;2:551542. [PMID: 33345115 DOI: 10.3389/fspor.2020.551542] [Reference Citation Analysis]
139 Ada L, Dean CM, Vargas J, Ennis S. Mechanically assisted walking with body weight support results in more independent walking than assisted overground walking in non-ambulatory patients early after stroke: a systematic review. Journal of Physiotherapy 2010;56:153-61. [DOI: 10.1016/s1836-9553(10)70020-5] [Cited by in Crossref: 60] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
140 Fréchou M, Margaill I, Marchand-Leroux C, Beray-Berthat V. Behavioral tests that reveal long-term deficits after permanent focal cerebral ischemia in mouse. Behav Brain Res 2019;360:69-80. [PMID: 30500429 DOI: 10.1016/j.bbr.2018.11.040] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
141 [DOI: 10.1109/mwscas.2015.7282097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
142 Wang FC, Chen SF, Lin CH, Shih CJ, Lin AC, Yuan W, Li YC, Kuo TY. Detection and Classification of Stroke Gaits by Deep Neural Networks Employing Inertial Measurement Units. Sensors (Basel) 2021;21:1864. [PMID: 33800061 DOI: 10.3390/s21051864] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
143 Seale J, Utsey C. Physical therapist's clinical reasoning in patients with gait impairments from hemiplegia. Physiother Theory Pract 2020;36:1379-89. [PMID: 30676183 DOI: 10.1080/09593985.2019.1567889] [Reference Citation Analysis]
144 Corbetta D, Imeri F, Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. J Physiother 2015;61:117-24. [PMID: 26093805 DOI: 10.1016/j.jphys.2015.05.017] [Cited by in Crossref: 126] [Cited by in F6Publishing: 80] [Article Influence: 18.0] [Reference Citation Analysis]
145 Herren K, Schmid S, Rogan S, Radlinger L. Effects of Stochastic Resonance Whole-Body Vibration in Individuals with Unilateral Brain Lesion: A Single-Blind Randomized Controlled Trial: Whole-Body Vibration and Neuromuscular Function. Rehabil Res Pract 2018;2018:9319258. [PMID: 30155308 DOI: 10.1155/2018/9319258] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
146 Cano-de-la-cuerda R, Molero-sánchez A, Carratalá-tejada M, Alguacil-diego I, Molina-rueda F, Miangolarra-page J, Torricelli D. Theories and control models and motor learning: Clinical applications in neurorehabilitation. Neurología (English Edition) 2015;30:32-41. [DOI: 10.1016/j.nrleng.2011.12.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
147 Eng JJ. Fitness and Mobility Exercise (FAME) Program for stroke. Top Geriatr Rehabil 2010;26:310-23. [PMID: 22287825 DOI: 10.1097/TGR.0b013e3181fee736] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
148 Yu WH, Liu WY, Wong AM, Wang TC, Li YC, Lien HY. Effect of forced use of the lower extremity on gait performance and mobility of post-acute stroke patients. J Phys Ther Sci 2015;27:421-5. [PMID: 25729182 DOI: 10.1589/jpts.27.421] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
149 Sota K, Uchiyama Y, Ochi M, Matsumoto S, Hachisuka K, Domen K. Examination of Factors Related to the Effect of Improving Gait Speed With Functional Electrical Stimulation Intervention for Stroke Patients. PM&R 2018;10:798-805. [DOI: 10.1016/j.pmrj.2018.02.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
150 Naghibi SS, Ghassemi F, Maleki A, Fallah A. The Effects of Upper Limb Motor Recovery on Submovement Characteristics among the Patients with Stroke: A Meta-Analysis. PM R 2020;12:589-601. [PMID: 31773910 DOI: 10.1002/pmrj.12294] [Reference Citation Analysis]
151 Han S, Cai M, Yang H, Yang Y, Pan M. Can kinematic variables deduce functional scales among chronic stroke survivors? A proof of concept for inertial sensors. SR 2022. [DOI: 10.1108/sr-10-2021-0357] [Reference Citation Analysis]
152 Wüest S, van de Langenberg R, de Bruin ED. Design considerations for a theory-driven exergame-based rehabilitation program to improve walking of persons with stroke. Eur Rev Aging Phys Act 2014;11:119-29. [PMID: 25309631 DOI: 10.1007/s11556-013-0136-6] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
153 Hwang S, Jeon HS, Yi CH, Kwon OY, Cho SH, You SH. Locomotor imagery training improves gait performance in people with chronic hemiparetic stroke: a controlled clinical trial. Clin Rehabil 2010;24:514-22. [PMID: 20392784 DOI: 10.1177/0269215509360640] [Cited by in Crossref: 53] [Cited by in F6Publishing: 37] [Article Influence: 4.4] [Reference Citation Analysis]
154 Luo L, Zhu S, Shi L, Wang P, Li M, Yuan S. High Intensity Exercise for Walking Competency in Individuals with Stroke: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis 2019;28:104414. [PMID: 31570262 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104414] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
155 Tien HH, Liu WY, Chen YL, Wu YC, Lien HY. Transcranial direct current stimulation for improving ambulation after stroke: a systematic review and meta-analysis. Int J Rehabil Res 2020;43:299-309. [PMID: 32675686 DOI: 10.1097/MRR.0000000000000427] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
156 Fallahtafti F, Pfeifer CM, Buster TW, Burnfield JM. Effect of motor-assisted elliptical training speed and body weight support on center of pressure movement variability. Gait Posture 2020;81:138-43. [PMID: 32888552 DOI: 10.1016/j.gaitpost.2020.07.018] [Reference Citation Analysis]
157 Hsiao H, Awad LN, Palmer JA, Higginson JS, Binder-Macleod SA. Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke. Neurorehabil Neural Repair 2016;30:743-52. [PMID: 26721869 DOI: 10.1177/1545968315624780] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 5.6] [Reference Citation Analysis]
158 Maestas G, Hu J, Trevino J, Chunduru P, Kim SJ, Lee H. Walking Speed Influences the Effects of Implicit Visual Feedback Distortion on Modulation of Gait Symmetry. Front Hum Neurosci 2018;12:114. [PMID: 29632481 DOI: 10.3389/fnhum.2018.00114] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
159 Chen MD, Rimmer JH. Effects of exercise on quality of life in stroke survivors: a meta-analysis. Stroke 2011;42:832-7. [PMID: 21293015 DOI: 10.1161/STROKEAHA.110.607747] [Cited by in Crossref: 57] [Cited by in F6Publishing: 22] [Article Influence: 5.2] [Reference Citation Analysis]
160 Nashed J, Sundaresh A, Laurie C, Page C, Hines C, Ong SM, Black S, Heywood S. Gait, Function, and Strength Following Lower Limb Salvage Surgery for a Primary Malignant Bone Tumor: A Systematic Review. Rehabilitation Oncology 2022;40:105-15. [DOI: 10.1097/01.reo.0000000000000309] [Reference Citation Analysis]
161 Chua KS, Chee J, Wong CJ, Lim PH, Lim WS, Hoo CM, Ong WS, Shen ML, Yu WS. A pilot clinical trial on a Variable Automated Speed and Sensing Treadmill (VASST) for hemiparetic gait rehabilitation in stroke patients. Front Neurosci 2015;9:231. [PMID: 26217170 DOI: 10.3389/fnins.2015.00231] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
162 Li P, Yamada Y, Yamada K, Yokoya M. Functional Resistance Training With Gait Phase-Dependent Control Using a Robotic Walker: A Pilot Study. IEEE Access 2022;10:64976-88. [DOI: 10.1109/access.2022.3183749] [Reference Citation Analysis]
163 Nolan KJ, Karunakaran KK, Chervin K, Monfett MR, Bapineedu RK, Jasey NN, Oh-Park M. Robotic Exoskeleton Gait Training During Acute Stroke Inpatient Rehabilitation. Front Neurorobot 2020;14:581815. [PMID: 33192438 DOI: 10.3389/fnbot.2020.581815] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
164 Nascimento LR, Ada L, Teixeira-salmela LF. The provision of a cane provides greater benefit to community-dwelling people after stroke with a baseline walking speed between 0.4 and 0.8 metres/second: an experimental study. Physiotherapy 2016;102:351-6. [DOI: 10.1016/j.physio.2015.10.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
165 [DOI: 10.1109/icrom.2018.8657639] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
166 Maddalena M, Saadat M. Simulated muscle activity in locomotion: implications of co-occurrence between effort minimisation and gait modularity for robot-assisted rehabilitation therapy. Comput Methods Biomech Biomed Engin 2021;:1-13. [PMID: 33646850 DOI: 10.1080/10255842.2021.1890046] [Reference Citation Analysis]
167 Mehta S, Pereira S, Janzen S, Mays R, Viana R, Lobo L, Teasell RW. Cardiovascular Conditioning for Comfortable Gait Speed and Total Distance Walked During the Chronic Stage of Stroke: A Meta-Analysis. Topics in Stroke Rehabilitation 2014;19:463-70. [DOI: 10.1310/tsr1906-463] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
168 Handlery R, Regan EW, Stewart JC, Pellegrini C, Monroe C, Hainline G, Handlery K, Fritz SL. Predictors of Daily Steps at 1-Year Poststroke: A Secondary Analysis of a Randomized Controlled Trial. Stroke 2021;52:1768-77. [PMID: 33691506 DOI: 10.1161/STROKEAHA.121.034249] [Reference Citation Analysis]
169 Wonsetler EC, Bowden MG. A systematic review of mechanisms of gait speed change post-stroke. Part 2: exercise capacity, muscle activation, kinetics, and kinematics. Top Stroke Rehabil 2017;24:394-403. [PMID: 28218021 DOI: 10.1080/10749357.2017.1282413] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 4.6] [Reference Citation Analysis]
170 Arens P, Siviy C, Bae J, Choe DK, Karavas N, Baker T, Ellis TD, Awad LN, Walsh CJ. Real-time gait metric estimation for everyday gait training with wearable devices in people poststroke. Wearable Technol 2021;2:e2. [PMID: 34396094 DOI: 10.1017/wtc.2020.11] [Reference Citation Analysis]