BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Belevych A, Kubalova Z, Terentyev D, Hamlin RL, Carnes CA, Györke S. Enhanced ryanodine receptor-mediated calcium leak determines reduced sarcoplasmic reticulum calcium content in chronic canine heart failure. Biophys J 2007;93:4083-92. [PMID: 17827226 DOI: 10.1529/biophysj.107.114546] [Cited by in Crossref: 73] [Cited by in F6Publishing: 69] [Article Influence: 4.9] [Reference Citation Analysis]
Number Citing Articles
1 Terentyev D, Györke I, Belevych AE, Terentyeva R, Sridhar A, Nishijima Y, de Blanco EC, Khanna S, Sen CK, Cardounel AJ, Carnes CA, Györke S. Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res 2008;103:1466-72. [PMID: 19008475 DOI: 10.1161/CIRCRESAHA.108.184457] [Cited by in Crossref: 251] [Cited by in F6Publishing: 160] [Article Influence: 17.9] [Reference Citation Analysis]
2 Tencerová B, Zahradníková A, Gaburjáková J, Gaburjáková M. Luminal Ca2+ controls activation of the cardiac ryanodine receptor by ATP. J Gen Physiol 2012;140:93-108. [PMID: 22851674 DOI: 10.1085/jgp.201110708] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
3 Blayney LM, Lai FA. Ryanodine receptor-mediated arrhythmias and sudden cardiac death. Pharmacol Ther 2009;123:151-77. [PMID: 19345240 DOI: 10.1016/j.pharmthera.2009.03.006] [Cited by in Crossref: 73] [Cited by in F6Publishing: 67] [Article Influence: 5.6] [Reference Citation Analysis]
4 Zhang JC, Wu HL, Chen Q, Xie XT, Zou T, Zhu C, Dong Y, Xiang GJ, Ye L, Li Y, Zhu PL. Calcium-Mediated Oscillation in Membrane Potentials and Atrial-Triggered Activity in Atrial Cells of Casq2R33Q/R33Q Mutation Mice. Front Physiol 2018;9:1447. [PMID: 30450052 DOI: 10.3389/fphys.2018.01447] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
5 Belevych AE, Radwański PB, Carnes CA, Györke S. 'Ryanopathy': causes and manifestations of RyR2 dysfunction in heart failure. Cardiovasc Res 2013;98:240-7. [PMID: 23408344 DOI: 10.1093/cvr/cvt024] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 4.9] [Reference Citation Analysis]
6 Joubert F, Wilding JR, Fortin D, Domergue-Dupont V, Novotova M, Ventura-Clapier R, Veksler V. Local energetic regulation of sarcoplasmic and myosin ATPase is differently impaired in rats with heart failure. J Physiol 2008;586:5181-92. [PMID: 18787038 DOI: 10.1113/jphysiol.2008.157677] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 2.3] [Reference Citation Analysis]
7 Hamilton S, Terentyeva R, Martin B, Perger F, Li J, Stepanov A, Bonilla IM, Knollmann BC, Radwański PB, Györke S, Belevych AE, Terentyev D. Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Basic Res Cardiol 2020;115:38. [PMID: 32444920 DOI: 10.1007/s00395-020-0797-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
8 Haizlip KM, Milani-Nejad N, Brunello L, Varian KD, Slabaugh JL, Walton SD, Gyorke S, Davis JP, Biesiadecki BJ, Janssen PM. Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium. Biomed Res Int 2015;2015:468548. [PMID: 25961020 DOI: 10.1155/2015/468548] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
9 Mason FE, Sossalla S. The Significance of the Late Na + Current for Arrhythmia Induction and the Therapeutic Antiarrhythmic Potential of Ranolazine. J Cardiovasc Pharmacol Ther 2017;22:40-50. [DOI: 10.1177/1074248416644989] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
10 Aistrup GL, Balke CW, Wasserstrom JA. Arrhythmia triggers in heart failure: the smoking gun of [Ca2+]i dysregulation. Heart Rhythm 2011;8:1804-8. [PMID: 21699870 DOI: 10.1016/j.hrthm.2011.06.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
11 Yuan Q, Han P, Dong M, Ren X, Zhou X, Chen S, Jones WK, Chu G, Wang HS, Kranias EG. Partial downregulation of junctin enhances cardiac calcium cycling without eliciting ventricular arrhythmias in mice. Am J Physiol Heart Circ Physiol 2009;296:H1484-90. [PMID: 19286959 DOI: 10.1152/ajpheart.00229.2008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Maxwell JT, Domeier TL, Blatter LA. Dantrolene prevents arrhythmogenic Ca2+ release in heart failure. Am J Physiol Heart Circ Physiol 2012;302:H953-63. [PMID: 22180651 DOI: 10.1152/ajpheart.00936.2011] [Cited by in Crossref: 62] [Cited by in F6Publishing: 60] [Article Influence: 5.6] [Reference Citation Analysis]
13 Györke S, Carnes C. Dysregulated sarcoplasmic reticulum calcium release: potential pharmacological target in cardiac disease. Pharmacol Ther. 2008;119:340-354. [PMID: 18675300 DOI: 10.1016/j.pharmthera.2008.06.002] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 3.3] [Reference Citation Analysis]
14 Pérez-Treviño P, Sepúlveda-Leal J, Altamirano J. Simultaneous assessment of calcium handling and contractility dynamics in isolated ventricular myocytes of a rat model of post-acute isoproterenol-induced cardiomyopathy. Cell Calcium 2020;86:102138. [PMID: 31838436 DOI: 10.1016/j.ceca.2019.102138] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
15 Dadson K, Calvillo-Argüelles O, Thavendiranathan P, Billia F. Anthracycline-induced cardiomyopathy: cellular and molecular mechanisms. Clin Sci (Lond) 2020;134:1859-85. [PMID: 32677679 DOI: 10.1042/CS20190653] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Montalvo D, Pérez-treviño P, Madrazo-aguirre K, González-mondellini FA, Miranda-roblero HO, Ramonfaur-gracia D, Jacobo-antonio M, Mayorga-luna M, Gómez-víquez NL, García N, Altamirano J. Underlying mechanism of the contractile dysfunction in atrophied ventricular myocytes from a murine model of hypothyroidism. Cell Calcium 2018;72:26-38. [DOI: 10.1016/j.ceca.2018.01.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
17 Ferrantini C, Coppini R, Scellini B, Ferrara C, Pioner JM, Mazzoni L, Priori S, Cerbai E, Tesi C, Poggesi C. R4496C RyR2 mutation impairs atrial and ventricular contractility. J Gen Physiol 2016;147:39-52. [PMID: 26666913 DOI: 10.1085/jgp.201511450] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
18 Cortassa S, Juhaszova M, Aon MA, Zorov DB, Sollott SJ. Mitochondrial Ca2+, redox environment and ROS emission in heart failure: Two sides of the same coin? J Mol Cell Cardiol 2021;151:113-25. [PMID: 33301801 DOI: 10.1016/j.yjmcc.2020.11.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
19 Bazmi M, Escobar AL. Excitation-Contraction Coupling in the Goldfish (Carassius auratus) Intact Heart. Front Physiol 2020;11:1103. [PMID: 33041845 DOI: 10.3389/fphys.2020.01103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Murfitt L, Whiteley G, Iqbal MM, Kitmitto A. Targeting caveolin-3 for the treatment of diabetic cardiomyopathy. Pharmacol Ther 2015;151:50-71. [PMID: 25779609 DOI: 10.1016/j.pharmthera.2015.03.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
21 Kryshtal DO, Gryshchenko O, Gomez-Hurtado N, Knollmann BC. Impaired calcium-calmodulin-dependent inactivation of Cav1.2 contributes to loss of sarcoplasmic reticulum calcium release refractoriness in mice lacking calsequestrin 2. J Mol Cell Cardiol 2015;82:75-83. [PMID: 25758429 DOI: 10.1016/j.yjmcc.2015.02.027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
22 Belevych AE, Terentyev D, Terentyeva R, Nishijima Y, Sridhar A, Hamlin RL, Carnes CA, Györke S. The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc Res 2011;90:493-502. [PMID: 21273243 DOI: 10.1093/cvr/cvr025] [Cited by in Crossref: 97] [Cited by in F6Publishing: 94] [Article Influence: 8.8] [Reference Citation Analysis]
23 Venkataraman R, Baldo MP, Hwang HS, Veltri T, Pinto JR, Baudenbacher FJ, Knollmann BC. Myofilament calcium de-sensitization and contractile uncoupling prevent pause-triggered ventricular tachycardia in mouse hearts with chronic myocardial infarction. J Mol Cell Cardiol 2013;60:8-15. [PMID: 23570978 DOI: 10.1016/j.yjmcc.2013.03.022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
24 Harvey AP, Grieve DJ. Reactive Oxygen Species (ROS) Signaling in Cardiac Remodeling and Failure. In: Laher I, editor. Systems Biology of Free Radicals and Antioxidants. Berlin: Springer Berlin Heidelberg; 2014. pp. 951-92. [DOI: 10.1007/978-3-642-30018-9_50] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
25 Boycott HE, Nguyen MN, Vrellaku B, Gehmlich K, Robinson P. Nitric Oxide and Mechano-Electrical Transduction in Cardiomyocytes. Front Physiol 2020;11:606740. [PMID: 33384614 DOI: 10.3389/fphys.2020.606740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Nikolaienko R, Bovo E, Zima AV. Redox Dependent Modifications of Ryanodine Receptor: Basic Mechanisms and Implications in Heart Diseases. Front Physiol 2018;9:1775. [PMID: 30574097 DOI: 10.3389/fphys.2018.01775] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
27 Ke J, Xiao X, Chen F, He L, Dai MS, Wang XP, Chen B, Chen M, Zhang CT. Function of the CaMKII-ryanodine receptor signaling pathway in rabbits with left ventricular hypertrophy and triggered ventricular arrhythmia. World J Emerg Med 2012;3:65-70. [PMID: 25215041 DOI: 10.5847/wjem.j.issn.1920-8642.2012.01.012] [Reference Citation Analysis]
28 Tamargo J, López-sendón J. Novel therapeutic targets for the treatment of heart failure. Nat Rev Drug Discov 2011;10:536-55. [DOI: 10.1038/nrd3431] [Cited by in Crossref: 95] [Cited by in F6Publishing: 81] [Article Influence: 8.6] [Reference Citation Analysis]
29 Eisner D, Bode E, Venetucci L, Trafford A. Calcium flux balance in the heart. J Mol Cell Cardiol 2013;58:110-7. [PMID: 23220128 DOI: 10.1016/j.yjmcc.2012.11.017] [Cited by in Crossref: 80] [Cited by in F6Publishing: 70] [Article Influence: 8.0] [Reference Citation Analysis]
30 Belevych AE, Terentyev D, Viatchenko-Karpinski S, Terentyeva R, Sridhar A, Nishijima Y, Wilson LD, Cardounel AJ, Laurita KR, Carnes CA, Billman GE, Gyorke S. Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovasc Res 2009;84:387-95. [PMID: 19617226 DOI: 10.1093/cvr/cvp246] [Cited by in Crossref: 99] [Cited by in F6Publishing: 95] [Article Influence: 7.6] [Reference Citation Analysis]
31 Ruiz-meana M, Fernandez-sanz C, Garcia-dorado D. The SR-mitochondria interaction: a new player in cardiac pathophysiology. Cardiovascular Research 2010;88:30-9. [DOI: 10.1093/cvr/cvq225] [Cited by in Crossref: 66] [Cited by in F6Publishing: 67] [Article Influence: 5.5] [Reference Citation Analysis]
32 Ather S, Wehrens XHT. Ca2+ Release Channels (Ryanodine Receptors) and Arrhythmogenesis. In: Gussak I, Antzelevitch C, editors. Electrical Diseases of the Heart. London: Springer; 2013. pp. 281-97. [DOI: 10.1007/978-1-4471-4881-4_17] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
33 Hamilton S, Terentyeva R, Kim TY, Bronk P, Clements RT, O-Uchi J, Csordás G, Choi BR, Terentyev D. Pharmacological Modulation of Mitochondrial Ca2+ Content Regulates Sarcoplasmic Reticulum Ca2+ Release via Oxidation of the Ryanodine Receptor by Mitochondria-Derived Reactive Oxygen Species. Front Physiol 2018;9:1831. [PMID: 30622478 DOI: 10.3389/fphys.2018.01831] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
34 Bovo E, Mazurek SR, Blatter LA, Zima AV. Regulation of sarcoplasmic reticulum Ca²⁺ leak by cytosolic Ca²⁺ in rabbit ventricular myocytes. J Physiol 2011;589:6039-50. [PMID: 21986204 DOI: 10.1113/jphysiol.2011.214171] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
35 Sankaranarayanan R, Li Y, Greensmith DJ, Eisner DA, Venetucci L. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak. J Physiol 2016;594:611-23. [PMID: 26537441 DOI: 10.1113/JP271473] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
36 Sibbles ET, Waddell HMM, Mereacre V, Jones PP, Munro ML. The function and regulation of calsequestrin-2: implications in calcium-mediated arrhythmias. Biophys Rev. [DOI: 10.1007/s12551-021-00914-6] [Reference Citation Analysis]
37 Lascano EC, Felice JI, Wray S, Kosta S, Dauby PC, Cabrera-Fischer EI, Negroni JA. Experimental assessment of a myocyte-based multiscale model of cardiac contractile dysfunction. J Theor Biol 2018;456:16-28. [PMID: 30063925 DOI: 10.1016/j.jtbi.2018.07.038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Kuster GM, Lancel S, Zhang J, Communal C, Trucillo MP, Lim CC, Pfister O, Weinberg EO, Cohen RA, Liao R, Siwik DA, Colucci WS. Redox-mediated reciprocal regulation of SERCA and Na+-Ca2+ exchanger contributes to sarcoplasmic reticulum Ca2+ depletion in cardiac myocytes. Free Radic Biol Med 2010;48:1182-7. [PMID: 20132882 DOI: 10.1016/j.freeradbiomed.2010.01.038] [Cited by in Crossref: 96] [Cited by in F6Publishing: 91] [Article Influence: 8.0] [Reference Citation Analysis]
39 Kondratieva DS, Afanasiev SA, Popov SV. Influence of Amiodarone and Dronedarone on the Force-Interval Dependence of Rat Myocardium. Biomed Res Int 2018;2018:4737489. [PMID: 30155479 DOI: 10.1155/2018/4737489] [Reference Citation Analysis]
40 O'Toole D, Zaeri AAI, Nicklin SA, French AT, Loughrey CM, Martin TP. Signalling pathways linking cysteine cathepsins to adverse cardiac remodelling. Cell Signal 2020;76:109770. [PMID: 32891693 DOI: 10.1016/j.cellsig.2020.109770] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Dibb K, Eisner D. A small leak may sink a great ship but what does it do to the heart? J Physiol 2010;588:4849. [PMID: 21173084 DOI: 10.1113/jphysiol.2010.200840] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
42 Györke S, Belevych AE, Liu B, Kubasov IV, Carnes CA, Radwański PB. The role of luminal Ca regulation in Ca signaling refractoriness and cardiac arrhythmogenesis. J Gen Physiol 2017;149:877-88. [PMID: 28798279 DOI: 10.1085/jgp.201711808] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
43 Cooper LL, Li W, Lu Y, Centracchio J, Terentyeva R, Koren G, Terentyev D. Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca2+ handling in ageing rabbit hearts. J Physiol 2013;591:5895-911. [PMID: 24042501 DOI: 10.1113/jphysiol.2013.260521] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 7.7] [Reference Citation Analysis]
44 Sankaranarayanan R, Kistamás K, Greensmith DJ, Venetucci LA, Eisner DA. Systolic [Ca2+ ]i regulates diastolic levels in rat ventricular myocytes. J Physiol 2017;595:5545-55. [PMID: 28617952 DOI: 10.1113/JP274366] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
45 Greer JB, Magnuson JT, McGruer V, Qian L, Dasgupta S, Volz DC, Schlenk D. miR133b Microinjection during Early Development Targets Transcripts of Cardiomyocyte Ion Channels and Induces Oil-like Cardiotoxicity in Zebrafish (Danio rerio) Embryos. Chem Res Toxicol 2021;34:2209-15. [PMID: 34558284 DOI: 10.1021/acs.chemrestox.1c00238] [Reference Citation Analysis]
46 Denniss AL, Dashwood AM, Molenaar P, Beard NA. Sarcoplasmic reticulum calcium mishandling: central tenet in heart failure? Biophys Rev 2020;12:865-78. [PMID: 32696300 DOI: 10.1007/s12551-020-00736-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Shkryl VM, Maxwell JT, Domeier TL, Blatter LA. Refractoriness of sarcoplasmic reticulum Ca2+ release determines Ca2+ alternans in atrial myocytes. Am J Physiol Heart Circ Physiol 2012;302:H2310-20. [PMID: 22467301 DOI: 10.1152/ajpheart.00079.2012] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 6.0] [Reference Citation Analysis]
48 Ho HT, Belevych AE, Liu B, Bonilla IM, Radwański PB, Kubasov IV, Valdivia HH, Schober K, Carnes CA, Györke S. Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II. Hypertension 2016;68:1171-8. [PMID: 27647848 DOI: 10.1161/HYPERTENSIONAHA.116.07666] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
49 Eisner D, Caldwell J, Trafford A. Sarcoplasmic reticulum Ca-ATPase and heart failure 20 years later. Circ Res 2013;113:958-61. [PMID: 24071456 DOI: 10.1161/CIRCRESAHA.113.302187] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
50 Zima AV, Bovo E, Bers DM, Blatter LA. Ca²+ spark-dependent and -independent sarcoplasmic reticulum Ca²+ leak in normal and failing rabbit ventricular myocytes. J Physiol 2010;588:4743-57. [PMID: 20962003 DOI: 10.1113/jphysiol.2010.197913] [Cited by in Crossref: 127] [Cited by in F6Publishing: 120] [Article Influence: 10.6] [Reference Citation Analysis]
51 Marx SO, Marks AR. Dysfunctional ryanodine receptors in the heart: new insights into complex cardiovascular diseases. J Mol Cell Cardiol 2013;58:225-31. [PMID: 23507255 DOI: 10.1016/j.yjmcc.2013.03.005] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 6.3] [Reference Citation Analysis]
52 Delgado C, Ruiz-hurtado G, Gómez-hurtado N, González-ramos S, Rueda A, Benito G, Prieto P, Zaragoza C, Delicado EG, Pérez-sen R, Miras-portugal MT, Núñez G, Boscá L, Fernández-velasco M. NOD1, a new player in cardiac function and calcium handling. Cardiovascular Research 2015;106:375-86. [DOI: 10.1093/cvr/cvv118] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
53 Guerrero-Hernández A, Ávila G, Rueda A. Ryanodine receptors as leak channels. Eur J Pharmacol 2014;739:26-38. [PMID: 24291096 DOI: 10.1016/j.ejphar.2013.11.016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
54 Eisner DA, Caldwell JL, Kistamás K, Trafford AW. Calcium and Excitation-Contraction Coupling in the Heart. Circ Res 2017;121:181-95. [PMID: 28684623 DOI: 10.1161/CIRCRESAHA.117.310230] [Cited by in Crossref: 243] [Cited by in F6Publishing: 154] [Article Influence: 48.6] [Reference Citation Analysis]
55 Hamilton S, Terentyeva R, Perger F, Hernández Orengo B, Martin B, Gorr MW, Belevych AE, Clements RT, Györke S, Terentyev D. MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca2+ release in hypertrophic rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2021;321:H615-32. [PMID: 34415186 DOI: 10.1152/ajpheart.00126.2021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Domeier TL, Blatter LA, Zima AV. Alteration of sarcoplasmic reticulum Ca2+ release termination by ryanodine receptor sensitization and in heart failure. J Physiol 2009;587:5197-209. [PMID: 19736296 DOI: 10.1113/jphysiol.2009.177576] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 4.8] [Reference Citation Analysis]
57 McKee C, Bare DJ, Ai X. Stress-driven cardiac calcium mishandling via a kinase-to-kinase crosstalk. Pflugers Arch 2021;473:363-75. [PMID: 33590296 DOI: 10.1007/s00424-021-02533-2] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Zahradníková A, Valent I, Zahradník I. Frequency and release flux of calcium sparks in rat cardiac myocytes: a relation to RYR gating. J Gen Physiol 2010;136:101-16. [PMID: 20548054 DOI: 10.1085/jgp.200910380] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
59 Laurita KR, Rosenbaum DS. Cellular mechanisms of arrhythmogenic cardiac alternans. Prog Biophys Mol Biol 2008;97:332-47. [PMID: 18395246 DOI: 10.1016/j.pbiomolbio.2008.02.014] [Cited by in Crossref: 71] [Cited by in F6Publishing: 60] [Article Influence: 5.1] [Reference Citation Analysis]
60 Pereira L, Cheng H, Lao DH, Na L, van Oort RJ, Brown JH, Wehrens XH, Chen J, Bers DM. Epac2 mediates cardiac β1-adrenergic-dependent sarcoplasmic reticulum Ca2+ leak and arrhythmia. Circulation 2013;127:913-22. [PMID: 23363625 DOI: 10.1161/CIRCULATIONAHA.12.148619] [Cited by in Crossref: 106] [Cited by in F6Publishing: 69] [Article Influence: 11.8] [Reference Citation Analysis]
61 Undrovinas NA, Maltsev VA, Belardinelli L, Sabbah HN, Undrovinas A. Late sodium current contributes to diastolic cell Ca2+ accumulation in chronic heart failure. J Physiol Sci 2010;60:245-57. [PMID: 20490740 DOI: 10.1007/s12576-010-0092-0] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 5.3] [Reference Citation Analysis]
62 Bridge JH, Savio E. Revealing the cellular basis of heart failure. Biophys J 2007;93:3731-2. [PMID: 17827225 DOI: 10.1529/biophysj.107.116541] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
63 Briston SJ, Trafford AW. Primum non nocere: When will ryanodine receptor leak find its role in heart failure? Journal of Molecular and Cellular Cardiology 2011;50:13-5. [DOI: 10.1016/j.yjmcc.2010.11.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
64 Zhang D, Wang F, Li P, Gao Y. Mitochondrial Ca2+ Homeostasis: Emerging Roles and Clinical Significance in Cardiac Remodeling. Int J Mol Sci 2022;23:3025. [PMID: 35328444 DOI: 10.3390/ijms23063025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Hu ST, Shen YF, Liu GS, Lei CH, Tang Y, Wang JF, Yang YJ. Altered intracellular Ca2+ regulation in chronic rat heart failure. J Physiol Sci 2010;60:85-94. [PMID: 19997992 DOI: 10.1007/s12576-009-0070-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
66 Lascano E, Negroni J, Vila Petroff M, Mattiazzi A. Impact of RyR2 potentiation on myocardial function. Am J Physiol Heart Circ Physiol 2017;312:H1105-9. [PMID: 28389603 DOI: 10.1152/ajpheart.00855.2016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
67 Belevych AE, Ho HT, Bonilla IM, Terentyeva R, Schober KE, Terentyev D, Carnes CA, Györke S. The role of spatial organization of Ca2+ release sites in the generation of arrhythmogenic diastolic Ca2+ release in myocytes from failing hearts. Basic Res Cardiol 2017;112:44. [PMID: 28612155 DOI: 10.1007/s00395-017-0633-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
68 Kerfant B, Verheule S, Schotten U. Leaky ryanodine receptors in the failing heart: the root of all evil? Cardiovascular Research 2011;90:399-401. [DOI: 10.1093/cvr/cvr086] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
69 Carter S, Pitt SJ, Colyer J, Sitsapesan R. Ca²+-dependent phosphorylation of RyR2 can uncouple channel gating from direct cytosolic Ca²+ regulation. J Membr Biol 2011;240:21-33. [PMID: 21274522 DOI: 10.1007/s00232-011-9339-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
70 Kamgoué A, Ohayon J, Usson Y, Riou L, Tracqui P. Quantification of cardiomyocyte contraction based on image correlation analysis. Cytometry 2009;75A:298-308. [DOI: 10.1002/cyto.a.20700] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
71 Kuster GM, Häuselmann SP, Rosc-Schlüter BI, Lorenz V, Pfister O. Reactive oxygen/nitrogen species and the myocardial cell homeostasis: an ambiguous relationship. Antioxid Redox Signal 2010;13:1899-910. [PMID: 20698753 DOI: 10.1089/ars.2010.3464] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
72 Eisner DA. Ups and downs of calcium in the heart. J Physiol 2018;596:19-30. [PMID: 29071725 DOI: 10.1113/JP275130] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
73 Zima AV, Bovo E, Mazurek SR, Rochira JA, Li W, Terentyev D. Ca handling during excitation-contraction coupling in heart failure. Pflugers Arch 2014;466:1129-37. [PMID: 24515294 DOI: 10.1007/s00424-014-1469-3] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 8.1] [Reference Citation Analysis]
74 Houser SR. Does protein kinase a-mediated phosphorylation of the cardiac ryanodine receptor play any role in adrenergic regulation of calcium handling in health and disease? Circ Res 2010;106:1672-4. [PMID: 20538688 DOI: 10.1161/CIRCRESAHA.110.221853] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]