BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Katayama K, Ishida K, Saito M, Koike T, Hirasawa A, Ogoh S. Enhanced muscle pump during mild dynamic leg exercise inhibits sympathetic vasomotor outflow. Physiol Rep 2014;2:e12070. [PMID: 25347854 DOI: 10.14814/phy2.12070] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Katayama K, Saito M. Muscle sympathetic nerve activity during exercise. J Physiol Sci 2019;69:589-98. [DOI: 10.1007/s12576-019-00669-6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
2 Itoh Y, Katayama K, Iwamoto E, Goto K, Suzuki Y, Ohya T, Takao K, Ishida K. Blunted blood pressure response during hyperpnoea in endurance runners. Respiratory Physiology & Neurobiology 2016;230:22-8. [DOI: 10.1016/j.resp.2016.04.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
3 Katayama K, Barbosa TC, Kaur J, Young BE, Nandadeva D, Ogoh S, Fadel PJ. Muscle pump-induced inhibition of sympathetic vasomotor outflow during low-intensity leg cycling is attenuated by muscle metaboreflex activation. Journal of Applied Physiology 2020;128:1-7. [DOI: 10.1152/japplphysiol.00639.2019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Raimundo Fernades ÉM, de Moura SS, Silva RO, Totou NL, Baleeiro RDS, de Oliveira EC, Coelho DB, Cardoso LM, Becker LK. Acute volume expansion decreased baroreflex response after swimming but not after running exercise training in hypertensive rats. Clinical and Experimental Hypertension 2020;42:460-8. [DOI: 10.1080/10641963.2019.1693588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
5 Amin SB, Mugele H, Dobler FE, Marume K, Moore JP, Lawley JS. Intra-rater reliability of leg blood flow during dynamic exercise using Doppler ultrasound. Physiol Rep 2021;9:e15051. [PMID: 34617675 DOI: 10.14814/phy2.15051] [Reference Citation Analysis]
6 Iwamoto E, Katayama K, Ishida K. Exercise intensity modulates brachial artery retrograde blood flow and shear rate during leg cycling in hypoxia. Physiol Rep 2015;3:e12423. [PMID: 26038470 DOI: 10.14814/phy2.12423] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
7 Wan HY, Weavil JC, Thurston TS, Georgescu VP, Hureau TJ, Bledsoe AD, Buys MJ, Jessop JE, Richardson RS, Amann M. The exercise pressor reflex and chemoreflex interaction: cardiovascular implications for the exercising human. J Physiol 2020;598:2311-21. [PMID: 32170732 DOI: 10.1113/JP279456] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
8 Barbosa TC, Vianna LC, Hashimoto T, Petersen LG, Olesen ND, Tsukamoto H, Sørensen H, Ogoh S, Nóbrega ACL, Secher NH. Carotid baroreflex function at the onset of cycling in men. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2016;311:R870-8. [DOI: 10.1152/ajpregu.00173.2016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
9 Katayama K, Dominelli PB, Foster GE, Kipp S, Leahy MG, Ishida K, Sheel AW. Respiratory modulation of sympathetic vasomotor outflow during graded leg cycling. J Appl Physiol (1985) 2021;131:858-67. [PMID: 34197231 DOI: 10.1152/japplphysiol.00118.2021] [Reference Citation Analysis]
10 Katayama K, Smith JR, Goto K, Shimizu K, Saito M, Ishida K, Koike T, Iwase S, Harms CA. Elevated sympathetic vasomotor outflow in response to increased inspiratory muscle activity during exercise is less in young women compared with men. Exp Physiol 2018;103:570-80. [DOI: 10.1113/ep086817] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 4.8] [Reference Citation Analysis]
11 Sakamoto R, Katayose M, Yamada Y, Neki T, Kamoda T, Tamai K, Yamazaki K, Iwamoto E. High-but not moderate-intensity exercise acutely attenuates hypercapnia-induced vasodilation of the internal carotid artery in young men. Eur J Appl Physiol 2021;121:2471-85. [PMID: 34028613 DOI: 10.1007/s00421-021-04721-5] [Reference Citation Analysis]
12 Totou NL, Moura SS, Coelho DB, Oliveira EC, Becker LK, Lima WG. Swimming exercise demonstrates advantages over running exercise in reducing proteinuria and glomerulosclerosis in spontaneously hypertensive rats. Physiol Int 2018;105:76-85. [PMID: 29602293 DOI: 10.1556/2060.105.2018.1.7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
13 Katayama K, Itoh Y, Saito M, Koike T, Ishida K. Sympathetic vasomotor outflow and blood pressure increase during exercise with expiratory resistance. Physiol Rep 2015;3:e12421. [PMID: 26019293 DOI: 10.14814/phy2.12421] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
14 Katayama K, Ishida K, Saito M, Koike T, Ogoh S. Hypoxia attenuates cardiopulmonary reflex control of sympathetic nerve activity during mild dynamic leg exercise. Exp Physiol 2016;101:377-86. [PMID: 27094223 DOI: 10.1113/EP085632] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
15 Notarius CF, Millar PJ, Keir DA, Murai H, Haruki N, O'Donnell E, Marzolini S, Oh P, Floras JS. Training heart failure patients with reduced ejection fraction attenuates muscle sympathetic nerve activation during mild dynamic exercise. Am J Physiol Regul Integr Comp Physiol 2019;317:R503-12. [PMID: 31365304 DOI: 10.1152/ajpregu.00104.2019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
16 Notarius CF, Millar PJ, Doherty CJ, Incognito AV, Haruki N, O'Donnell E, Floras JS. Microneurographic characterization of sympathetic responses during 1-leg exercise in young and middle-aged humans. Appl Physiol Nutr Metab 2019;44:194-9. [PMID: 30063163 DOI: 10.1139/apnm-2018-0101] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
17 Doherty CJ, Incognito AV, Notay K, Burns MJ, Slysz JT, Seed JD, Nardone M, Burr JF, Millar PJ. Muscle sympathetic nerve responses to passive and active one-legged cycling: insights into the contributions of central command. Am J Physiol Heart Circ Physiol 2018;314:H3-H10. [PMID: 28939650 DOI: 10.1152/ajpheart.00494.2017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
18 Katayama K, Kaur J, Young BE, Barbosa TC, Ogoh S, Fadel PJ. High-intensity muscle metaboreflex activation attenuates cardiopulmonary baroreflex-mediated inhibition of muscle sympathetic nerve activity. J Appl Physiol (1985) 2018;125:812-9. [PMID: 29672226 DOI: 10.1152/japplphysiol.00161.2018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
19 Doherty CJ, King TJ, Incognito AV, Lee JB, Shepherd AD, Cacoilo JA, Slysz JT, Burr JF, Millar PJ. Effects of dynamic arm and leg exercise on muscle sympathetic nerve activity and vascular conductance in the inactive leg. J Appl Physiol (1985) 2019;127:464-72. [PMID: 31246555 DOI: 10.1152/japplphysiol.00997.2018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
20 Saito S, Washio T, Watanabe H, Katayama K, Ogoh S. Influence of cardiac output response to the onset of exercise on cerebral blood flow. Eur J Appl Physiol 2022. [PMID: 35660969 DOI: 10.1007/s00421-022-04973-9] [Reference Citation Analysis]
21 Ogoh S, Saito S, Watanabe H, Katayama K. Cerebral blood velocity and arterial pressure at the onset of exercise: potential influence of the cardiopulmonary baroreflex. Clin Auton Res 2022. [PMID: 35129712 DOI: 10.1007/s10286-022-00855-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]