BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Barbora A, Bohar O, Sivan AA, Magory E, Nause A, Minnes R. Higher pulse frequency of near-infrared laser irradiation increases penetration depth for novel biomedical applications. PLoS One 2021;16:e0245350. [PMID: 33411831 DOI: 10.1371/journal.pone.0245350] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Kaub L, Schmitz C. More than Ninety Percent of the Light Energy Emitted by Near-Infrared Laser Therapy Devices Used to Treat Musculoskeletal Disorders Is Absorbed within the First Ten Millimeters of Biological Tissue. Biomedicines 2022;10. [PMID: 36551959 DOI: 10.3390/biomedicines10123204] [Reference Citation Analysis]
2 Yang J, Fu Q, Jiang H, Li Y, Liu M. Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy. Front Oncol 2022;12:1022973. [DOI: 10.3389/fonc.2022.1022973] [Reference Citation Analysis]
3 Božinović K, Nestić D, Michail E, Ferger M, Košćak M, Lambert C, Majhen D, Marder TB, Piantanida I. Diethynylarene-linked bis(triarylborane)cations as theranostic agents for tumor cell and virus-targeted photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology 2022;234:112523. [DOI: 10.1016/j.jphotobiol.2022.112523] [Reference Citation Analysis]
4 Feigin L, Weinberg A, Nause A. Algorithm Verification of Single-Shot Relativistic Emittance Proposed Measuring Method. Electronics 2022;11:2092. [DOI: 10.3390/electronics11132092] [Reference Citation Analysis]
5 Wu K, Mohsin A, Zaman WQ, Zhang Z, Guan W, Chu M, Zhuang Y, Guo M. Urchin-like magnetic microspheres for cancer therapy through synergistic effect of mechanical force, photothermal and photodynamic effects. J Nanobiotechnology 2022;20:224. [PMID: 35549715 DOI: 10.1186/s12951-022-01411-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Lenzi E, Jimenez de Aberasturi D, Henriksen-Lacey M, Piñeiro P, Muniz AJ, Lahann J, Liz-Marzán LM. SERS and Fluorescence-Active Multimodal Tessellated Scaffolds for Three-Dimensional Bioimaging. ACS Appl Mater Interfaces 2022;14:20708-19. [PMID: 35487502 DOI: 10.1021/acsami.2c02615] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Yun WS, Park JH, Lim DK, Ahn CH, Sun IC, Kim K. How Did Conventional Nanoparticle-Mediated Photothermal Therapy Become "Hot" in Combination with Cancer Immunotherapy? Cancers (Basel) 2022;14:2044. [PMID: 35454950 DOI: 10.3390/cancers14082044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
8 Hamdy O, Mohammed HS. Variations in tissue optical parameters with the incident power of an infrared laser. PLoS One 2022;17:e0263164. [PMID: 35100314 DOI: 10.1371/journal.pone.0263164] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Barbora A, Yazbak F, Lyssenko S, Nave V, Nakonechny F, Ben Ishai P, Minnes R. Second harmonic generation nanoparticles enables Near-Infrared Photodynamic Therapy from visible light reactive photosensitizer conjugates. PLoS One 2022;17:e0274954. [PMID: 36173987 DOI: 10.1371/journal.pone.0274954] [Reference Citation Analysis]
10 Real DA, Bolaños K, Priotti J, Yutronic N, Kogan MJ, Sierpe R, Donoso-González O. Cyclodextrin-Modified Nanomaterials for Drug Delivery: Classification and Advances in Controlled Release and Bioavailability. Pharmaceutics 2021;13:2131. [PMID: 34959412 DOI: 10.3390/pharmaceutics13122131] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]