BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ferreira FMRM, Chaves MEA, Oliveira VC, Van Petten AMVN, Vimieiro CBS. Effectiveness of robot therapy on body function and structure in people with limited upper limb function: A systematic review and meta-analysis. PLoS One 2018;13:e0200330. [PMID: 30001417 DOI: 10.1371/journal.pone.0200330] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Zhang L, Jia G, Ma J, Wang S, Cheng L. Short and long-term effects of robot-assisted therapy on upper limb motor function and activity of daily living in patients post-stroke: a meta-analysis of randomized controlled trials. J Neuroeng Rehabil 2022;19:76. [PMID: 35864524 DOI: 10.1186/s12984-022-01058-8] [Reference Citation Analysis]
2 Ferreira FMRM, de Paula Rúbio G, Dutra RMA, Van Petten AMVN, Vimieiro CBS. Development of portable robotic orthosis and biomechanical validation in people with limited upper limb function after stroke. Robotica. [DOI: 10.1017/s0263574722000881] [Reference Citation Analysis]
3 Righi M, Magrini M, Dolciotti C, Moroni D. A Case Study of Upper Limb Robotic-Assisted Therapy Using the Track-Hold Device. Sensors (Basel) 2022;22:1009. [PMID: 35161755 DOI: 10.3390/s22031009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Ferreira FMRM, Chaves MEA, Oliveira VC, Martins JSR, Vimieiro CBS, Van Petten AMVN. Effect of Robot-Assisted Therapy on Participation of People with Limited Upper Limb Functioning: A Systematic Review with GRADE Recommendations. Occup Ther Int 2021;2021:6649549. [PMID: 34393681 DOI: 10.1155/2021/6649549] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Ganesh A, Ospel JM, Marko M, van Zwam WH, Roos YBWEM, Majoie CBLM, Goyal M. From Three-Months to Five-Years: Sustaining Long-Term Benefits of Endovascular Therapy for Ischemic Stroke. Front Neurol 2021;12:713738. [PMID: 34381418 DOI: 10.3389/fneur.2021.713738] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Huang MZ, Yoon YS, Yang J, Yang CY, Zhang LQ. In-Bed Sensorimotor Rehabilitation in Early and Late Subacute Stroke Using a Wearable Elbow Robot: A Pilot Study. Front Hum Neurosci 2021;15:669059. [PMID: 34108868 DOI: 10.3389/fnhum.2021.669059] [Reference Citation Analysis]
7 Liu S, Fang Z, Liu J, Tang K, Luo J, Yi J, Hu X, Wang Z. A Compact Soft Robotic Wrist Brace With Origami Actuators. Front Robot AI 2021;8:614623. [PMID: 33842555 DOI: 10.3389/frobt.2021.614623] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Guillén-Climent S, Garzo A, Muñoz-Alcaraz MN, Casado-Adam P, Arcas-Ruiz-Ruano J, Mejías-Ruiz M, Mayordomo-Riera FJ. A usability study in patients with stroke using MERLIN, a robotic system based on serious games for upper limb rehabilitation in the home setting. J Neuroeng Rehabil 2021;18:41. [PMID: 33622344 DOI: 10.1186/s12984-021-00837-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
9 Yeganeh Doost M, Herman B, Denis A, Sapin J, Galinski D, Riga A, Laloux P, Bihin B, Vandermeeren Y. Bimanual motor skill learning and robotic assistance for chronic hemiparetic stroke: a randomized controlled trial. Neural Regen Res 2021;16:1566-73. [PMID: 33433485 DOI: 10.4103/1673-5374.301030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
10 Yang J, Zhao Z, Du C, Wang W, Peng Q, Qiu J, Wang G. The realization of robotic neurorehabilitation in clinical: use of computational intelligence and future prospects analysis. Expert Rev Med Devices 2020;17:1311-22. [PMID: 33252284 DOI: 10.1080/17434440.2020.1852930] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Chen Z, Wang C, Fan W, Gu M, Yasin G, Xiao S, Huang J, Huang X. Robot-Assisted Arm Training versus Therapist-Mediated Training after Stroke: A Systematic Review and Meta-Analysis. J Healthc Eng 2020;2020:8810867. [PMID: 33194159 DOI: 10.1155/2020/8810867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 Everard GJ, Ajana K, Dehem SB, Stoquart GG, Edwards MG, Lejeune TM. Is cognition considered in post-stroke upper limb robot-assisted therapy trials? A brief systematic review. Int J Rehabil Res 2020;43:195-8. [PMID: 32769583 DOI: 10.1097/MRR.0000000000000420] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 da Silva ESM, Ocamoto GN, Santos-Maia GLD, de Fátima Carreira Moreira Padovez R, Trevisan C, de Noronha MA, Pereira ND, Borstad A, Russo TL. The Effect of Priming on Outcomes of Task-Oriented Training for the Upper Extremity in Chronic Stroke: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair 2020;34:479-504. [PMID: 32452242 DOI: 10.1177/1545968320912760] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
14 Micera S, Caleo M, Chisari C, Hummel FC, Pedrocchi A. Advanced Neurotechnologies for the Restoration of Motor Function. Neuron 2020;105:604-20. [PMID: 32078796 DOI: 10.1016/j.neuron.2020.01.039] [Cited by in Crossref: 20] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
15 [DOI: 10.1145/3371382.3380733] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Rúbio GDP, Martins Ferreira FMR, Brandão FHDL, Machado VF, Tonelli LG, Martins JSR, Kozan RF, Vimieiro CBS. Evaluation of Commercial Ropes Applied as Artificial Tendons in Robotic Rehabilitation Orthoses. Applied Sciences 2020;10:920. [DOI: 10.3390/app10030920] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Clark WE, Sivan M, O'Connor RJ. Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review. J Rehabil Assist Technol Eng 2019;6:2055668319863557. [PMID: 31763052 DOI: 10.1177/2055668319863557] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
18 Zimmermann Y, Forino A, Riener R, Hutter M. ANYexo: A Versatile and Dynamic Upper-Limb Rehabilitation Robot. IEEE Robot Autom Lett 2019;4:3649-56. [DOI: 10.1109/lra.2019.2926958] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 7.7] [Reference Citation Analysis]
19 Fazekas G, Tavaszi I. The future role of robots in neuro-rehabilitation. Expert Review of Neurotherapeutics 2019;19:471-3. [DOI: 10.1080/14737175.2019.1617700] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
20 [DOI: 10.1109/robosoft.2019.8722771] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
21 PLOS ONE Staff. Correction: Effectiveness of robot therapy on body function and structure in people with limited upper limb function: A systematic review and meta-analysis. PLoS One 2018;13:e0207962. [PMID: 30444923 DOI: 10.1371/journal.pone.0207962] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]