BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wood S, Krishnamurthy N, Santini T, Raval SB, Farhat N, Holmes JA, Ibrahim TS. Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes. PLoS One 2017;12:e0183168. [PMID: 28806768 DOI: 10.1371/journal.pone.0183168] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Wood S, Krishnamurthy N, Santini T, Raval SB, Farhat N, Holmes JA, Ibrahim TS. Correction: Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes. PLoS One 2018;13:e0192794. [PMID: 29415085 DOI: 10.1371/journal.pone.0192794] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Jona G, Furman-Haran E, Schmidt R. Realistic head-shaped phantom with brain-mimicking metabolites for 7 T spectroscopy and spectroscopic imaging. NMR Biomed 2021;34:e4421. [PMID: 33015864 DOI: 10.1002/nbm.4421] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
3 Wood S, Santini T, Krishnamurthy N, Martins T, Farhat N, Ibrahim TS. A comprehensive electromagnetic evaluation of an MRI anthropomorphic head phantom. NMR Biomed 2021;34:e4441. [PMID: 33354828 DOI: 10.1002/nbm.4441] [Reference Citation Analysis]
4 Deng G, Cai L, Feng J, Duan S, Zhang P, Xin SX. Reliable Method for Fabricating Tissue-Mimicking Materials With Designated Relative Permittivity and Conductivity at 128 MHz. Bioelectromagnetics 2021;42:86-94. [PMID: 33305868 DOI: 10.1002/bem.22303] [Reference Citation Analysis]
5 Silvestro E, Betts KN, Francavilla ML, Andronikou S, Sze RW. Imaging Properties of Additive Manufactured (3D Printed) Materials for Potential Use for Phantom Models. J Digit Imaging 2020;33:456-64. [PMID: 31520278 DOI: 10.1007/s10278-019-00257-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys 2018. [PMID: 29933508 DOI: 10.1002/mp.13058] [Cited by in Crossref: 77] [Cited by in F6Publishing: 51] [Article Influence: 19.3] [Reference Citation Analysis]
7 Parthasarathy J, Krishnamurthy R, Ostendorf A, Shinoka T, Krishnamurthy R. 3D printing with MRI in pediatric applications. J Magn Reson Imaging 2020;51:1641-58. [PMID: 31329332 DOI: 10.1002/jmri.26870] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
8 Valladares A, Beyer T, Rausch I. Physical imaging phantoms for simulation of tumor heterogeneity in PET, CT, and MRI: An overview of existing designs. Med Phys 2020;47:2023-37. [PMID: 31981214 DOI: 10.1002/mp.14045] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
9 Santini T, Kim J, Wood S, Krishnamurthy N, Farhat N, Maciel C, Raval SB, Zhao T, Ibrahim TS. A new RF transmit coil for foot and ankle imaging at 7T MRI. Magn Reson Imaging 2018;45:1-6. [PMID: 28893660 DOI: 10.1016/j.mri.2017.09.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Brink WM, Wu Z, Webb AG. A simple head-sized phantom for realistic static and radiofrequency characterization at high fields. Magn Reson Med 2018;80:1738-45. [PMID: 29498102 DOI: 10.1002/mrm.27153] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
11 Wood S, Martins T, Ibrahim TS. How to design and construct a 3D-printed human head phantom. J 3D Print Med 2019;3:119-25. [PMID: 31929893 DOI: 10.2217/3dp-2019-0016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Tino R, Leary M, Yeo A, Kyriakou E, Kron T, Brandt M. Additive manufacturing in radiation oncology: a review of clinical practice, emerging trends and research opportunities. Int J Extrem Manuf 2020;2:012003. [DOI: 10.1088/2631-7990/ab70af] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
13 Lepowsky E, Tasoglu S. Emerging Anti-Fouling Methods: Towards Reusability of 3D-Printed Devices for Biomedical Applications. Micromachines (Basel) 2018;9:E196. [PMID: 30424129 DOI: 10.3390/mi9040196] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
14 Zhong X, Cao Y, Zhou P. Thermochromic Tissue-Mimicking Phantoms for Thermal Ablation Based on Polyacrylamide Gel. Ultrasound Med Biol 2022;48:1361-72. [PMID: 35623921 DOI: 10.1016/j.ultrasmedbio.2022.03.021] [Reference Citation Analysis]
15 Azimbagirad M, Grillo FW, Hadadian Y, Carneiro AAO, Murta LO Jr. Biomimetic phantom with anatomical accuracy for evaluating brain volumetric measurements with magnetic resonance imaging. J Med Imaging (Bellingham) 2021;8:013503. [PMID: 33532513 DOI: 10.1117/1.JMI.8.1.013503] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Crasto N, Kirubarajan A, Sussman D. Anthropomorphic brain phantoms for use in MRI systems: a systematic review. MAGMA 2021. [PMID: 34463866 DOI: 10.1007/s10334-021-00953-w] [Reference Citation Analysis]